Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Cho 25x2-10x=0
=> 5x × (5x-2)=0
=>5x=0 => x=0
Hoặc 5x-2=0 => x=2/5
b, 19/5xy2 ×(x3y) ×(-3x13y5)0
=> 19x3y/5xy2
=> 19x2/5y
Bậc là : 2+1=3
k mk vs. Chúc bạn học thật giỏi
Bài 1:
Ta có: 25x2 - 10x = 0
<=> 25xx - 10x = 0
<=> x(25x-10) = 0
<=> \(\orbr{\begin{cases}x=0\\25x-10=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=2,5\end{cases}}\)
Vậy nghiệm của đa thức 25x2-10x là x = 0 và x = 2,5.
Bài 2:
Ta có: A = 19/5xy2.( x3y).(-3x13y5 )0
<=> A = 19/5xy2.( x3y) . 1
=> A = 19/5x4y3 . 1
Vậy đa thức A có bậc là 7
P - 2Q = x^4 + 10x^3 + 23x^2 - 10x - 24
= x^4 - x^3 + 11x^3 - 11x^2 + 34x^2 - 34x + 24x - 24
= (x - 1)(x^3 + 11x^2 + 34x +24)
= (x-1)(x^3+x^2+10x^2+10x+24x+24)
= (x-1)(x+1)(x^2 + 10x + 24)
=> P - 2Q có x = 1 và x= -1 là nghiệm của pt
P - 2Q = x^4 + 10x^3 + 23x^2 - 10x - 24
= x^4 - x^3 + 11x^3 - 11x^2 + 34x^2 - 34x + 24x - 24
= (x - 1)(x^3 + 11x^2 + 34x +24)
= (x-1)(x^3+x^2+10x^2+10x+24x+24)
= (x-1)(x+1)(x^2 + 10x + 24)
=> P - 2Q có x = 1 và x= -1 là nghiệm của pt
Ta có: \(P\left(x\right)=x^4+10x^3+25x^2=x^2\left(x^2+10x+25\right)=x^2\left(x+5\right)^2=\left(x^2+5x\right)^2\)
\(P\left(x\right)-2Q\left(x\right)=0\Leftrightarrow\left(x^2+5x\right)^2-2\left(x^2+5x+12\right)=0\)
Đặt \(x^2+5x=a\) phương trình trên trở thành:
\(a^2-2\left(a+12\right)=0\Leftrightarrow a^2-2a-24=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+5x=6\\x^2+5x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x-6=0\\x^2+5x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-6\\x=-1\\x=-4\end{matrix}\right.\)
a)\(x^2-4=0\Rightarrow x^2=4\Rightarrow x=-2,2\)
b)x(1-1/2x)=0=>x=0 hoặc 1-1/2x=0
=>x=0 hoặc 2
hk tốt
a) \(x^2-4\)
đặt \(x^2-4=0\)
\(x^2-4=0\)
\(x^2=0+4\)
\(x^2=4\)
\(x^2=\left(\pm2\right)^2\)
\(x=\pm2\)
Vậy \(x=\pm2\)là nghiệm của đa thức \(x^2-4\)
b) \(x-\frac{1}{2}x^2\)
đặt \(x-\frac{1}{2}x^2=0\)
\(x\left(1-\frac{1}{2}x\right)=0\)
\(TH1:x=0\) \(TH2:1-\frac{1}{2}x=0\)
\(\frac{1}{2}x=1-0\)
\(\frac{1}{2}x=1\)
\(x=1:\frac{1}{2}\)
\(x=2\)
Vậy x=0,2 là nghiệm của đa thức \(x-\frac{1}{2}x^2\)
a. Rút gọn đa thức và sắp xếp theo thứ tự giảm dần của biến..
\(A\left(x\right)=13x^4+3x^2+15x+7x^2-10x^4-7x-6-8x+15\)
\(=\left(13x^4-10x^4\right)+\left(3x^2+7x^2\right)+\left(15x-7x-8x\right)+\left(15-6\right)\)
\(=3x^4+10x^2+9.\)
\(B\left(x\right)=5x^4+10-5x^2-18+3x-10x^2-3x-4x^4\)
\(=\left(5x^4-4x^4\right)+\left(-5x^2-3x^2\right)+\left(3x-3x\right)+\left(10-18\right)\)
\(=x^4-8x^2-8\)
b. Tính M = A(x) + B(x) ; N = A(x) - B(x)
\(M=A\left(x\right)+B\left(x\right)=\left(3x^4+10x^2+9\right)+\left(x^4-8x^2-8\right)\)
\(=\left(3x^4+x^4\right)+\left(10x^2-8x^2\right)+\left(10-8\right)\)
\(=4x^4+2x^2+2\)
\(N=A\left(x\right)-B\left(x\right)=\left(3x^4+10x^2+9\right)-\left(x^4-8x^2-8\right)\)
\(=3x^4+10x^2+9-x^4+8x^2+8\)
\(=\left(3x^4-x^4\right)+\left(10x^2+8x^2\right)+\left(9+8\right)\)
\(=2x^4+18x^2+17\)
Cho A = 0
=> \(25x^22-10x=0\)
\(50x^2-10x=0\)
\(10x.\left(5x+1\right)=0\)
\(\Rightarrow10x=0\Rightarrow x=0\)
\(5x+1=0\Rightarrow5x=-1\Rightarrow x=\frac{-1}{5}\)
KL: x = 0; x= -1/5 là nghiệm của A