\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2003}\)

T...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Mình đã tìm ra cách giải rồi, các bạn có thể góp ý để bài làm của mình hoàn thiện hơn nữa nha...

Ta có:\(\frac{1}{A}=\frac{\sqrt{a-2003}+\sqrt{b-2003}}{\sqrt{a+b}}=\frac{\sqrt{a-2003}}{\sqrt{a+b}}+\frac{\sqrt{b-2003}}{\sqrt{a+b}}\)

 Mặt khác:\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2003}\Rightarrow\frac{a+b}{ab}=\frac{1}{2003}\Rightarrow2003=\)\(\frac{ab}{a+b} \left(1\right)\)

Thay (1) vào \(\frac{1}{A}\) ta được: \(\frac{1}{A}=\frac{\sqrt{a-\frac{ab}{a+b}}}{\sqrt{a+b}}+\frac{\sqrt{b-\frac{ab}{a+b}}}{\sqrt{a+b}}\)

\(\Leftrightarrow\frac{1}{A}=\sqrt{\frac{a-\frac{ab}{a+b}}{a+b}}+\sqrt{\frac{b-\frac{ab}{a+b}}{a+b}}\)

\(\Leftrightarrow\frac{1}{A}=\sqrt{\frac{\frac{a^2+ab-ab}{a+b}}{a+b}}+\sqrt{\frac{\frac{b^2+ab-ab}{a+b}}{a+b}}=\sqrt{\frac{a^2}{\left(a+b\right)^2}}+\sqrt{\frac{b^2}{\left(a+b\right)^2}}\)

\(\Leftrightarrow\frac{1}{A}=\left|\frac{a}{a+b}\right|+\left|\frac{b}{a+b}\right|=\frac{a}{a+b}+\frac{b}{a+b}\left(a>2003;b>2003\right)\)

\(\Leftrightarrow\frac{1}{A}=\frac{a+b}{a+b}=1\Leftrightarrow A=1\)

Vậy............................

29 tháng 11 2017

cái này quen quen

29 tháng 11 2017

đó, bt hôm qua, quen cái j, cách của m ko làm ra 

11 tháng 8 2017

ở đây nhé :

www.kichdam.vn

11 tháng 8 2017

\(A=\frac{1}{\sqrt{2001}+\sqrt{2003}}+\frac{1}{\sqrt{2003}+\sqrt{2005}}+...+\frac{1}{\sqrt{2015}+\sqrt{2017}}\)

Ta có công thức:

\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

Áp dụng vào công thức ta có:

\(A=\frac{1}{\sqrt{2001}+\sqrt{2003}}+\frac{1}{\sqrt{2003}+\sqrt{2005}}+...+\frac{1}{\sqrt{2015}+\sqrt{2017}}\)

\(A=\sqrt{2003}-\sqrt{2001}+\sqrt{2005}-\sqrt{2003}+...+\sqrt{2017}-\sqrt{2015}\)

\(A=\sqrt{2017}-\sqrt{2001}\approx0,17848\)

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
26 tháng 8 2018

\(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}\)

=\(\frac{2002\sqrt{2003}}{\sqrt{2003}.\sqrt{2003}}+\frac{2003\sqrt{2002}}{\sqrt{2002}.\sqrt{2002}}\)

=\(\frac{\sqrt{2002}.\sqrt{2002}.\sqrt{2003}}{\sqrt{2003}.\sqrt{2003}}+\frac{\sqrt{2003}.\sqrt{2003}.\sqrt{2002}}{\sqrt{2002}.\sqrt{2002}}\)

>\(\frac{\sqrt{2002}.\sqrt{2002}.\sqrt{2003}+\sqrt{2003}.\sqrt{2003}.\sqrt{2002}}{\sqrt{2003}.\sqrt{2002}}\)

>\(\frac{\sqrt{2002}.\sqrt{2003}.\left(\sqrt{2002}+\sqrt{2003}\right)}{\sqrt{2003}.\sqrt{2002}}\)

>\(\sqrt{2002}+\sqrt{2003}\)

=>\(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}\)>\(\sqrt{2002}+\sqrt{2003}\)(dpcm)

31 tháng 8 2017

căn 2002 bình phương phần căn 2003 + căn 2003 bình phương  phần căn 2002 lớn hơn .....

tự nghĩ mik làm đến đây thôi bạn chỉ cần chuyển vế và làm mấy bước nữa thì xong

29 tháng 8 2018

Bài 1:

a, \(4\sqrt{3+2\sqrt{2}}-\sqrt{57+40\sqrt{2}}\)

\(=4\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(4\sqrt{2}+5\right)^2}\)

\(=4\left(\sqrt{2}+1\right)-4\sqrt{2}-5\)

\(=4\sqrt{2}+4-4\sqrt{2}-5=-1\)

b, \(B=\sqrt{1100}-7\sqrt{44}+2\sqrt{176}-\sqrt{1331}\)

\(=10\sqrt{11}-14\sqrt{11}+8\sqrt{11}-11\sqrt{11}=-7\sqrt{11}\)

c, \(C=\sqrt{\left(1-\sqrt{2002}\right)^2}.\sqrt{2003+2\sqrt{2002}}\)

\(=\left(1-\sqrt{2002}\right).\sqrt{\left(\sqrt{2002}+1\right)^2}\)

\(=\left(1-\sqrt{2002}\right).\left(\sqrt{2002}+1\right)=-2001\)

Câu d bạn kiểm tra lại đề bài nhé.

Bài 2:

\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)

a, ĐK: \(x\ge0,x\ne1\)

b, ĐK: \(x\ge0,x\ne1\)

 \(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)

\(=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}-\frac{\sqrt{x}}{x-1}\)

\(=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x-1}\)

\(=\frac{2\sqrt{x}+2-2\sqrt{x}+2}{4\left(x-1\right)}-\frac{\sqrt{x}}{x-1}\)

\(=\frac{4-4\sqrt{x}}{4\left(x-1\right)}=\frac{4\left(1-\sqrt{x}\right)}{4\left(1-x\right)}=\frac{1-\sqrt{x}}{1-x}\)

Thay \(x=3\left(TM\right)\)vào A ta có: \(A=\frac{1-\sqrt{3}}{3-1}=\frac{1-\sqrt{3}}{2}\)

Vậy với \(x=3\)thì \(A=\frac{1-\sqrt{3}}{2}\)

c, \(\left|A\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}A=\frac{1}{2}\\A=-\frac{1}{2}\end{cases}}\)

TH1: \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=\frac{1}{2}\Leftrightarrow2-2\sqrt{x}=x-1\)\(\Leftrightarrow x-1-2+2\sqrt{x}=0\)\(\Leftrightarrow x+2\sqrt{x}-3=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\\sqrt{x}=-3\left(L\right)\end{cases}}}\)

TH2: \(A=-\frac{1}{2}\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=-\frac{1}{2}\)\(\Leftrightarrow2-2\sqrt{x}=1-x\Leftrightarrow-x+1-2+2\sqrt{x}=0\)\(\Leftrightarrow-x-1+2\sqrt{x}=0\Leftrightarrow x-2\sqrt{x}+1=0\)\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=0\Leftrightarrow\sqrt{x}=-1\left(L\right)\)

Vậy với \(x=1\)thì \(\left|A\right|=\frac{1}{2}\)

30 tháng 8 2018

Cám ơn bạn nhiều nha!!!

6 tháng 10 2019

\(sigma\frac{a}{1+b^2}=sigma\left(a-\frac{ab^2}{1+b^2}\right)\ge sigma\left(a\right)-sigma\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}>\frac{2018}{2003}\)