Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ủa sao lệnh tex ko lên nhỉ ??
Sửa lại : \(a_1,a_2,....,a_n\inℝ\)
Bạn xem lời giải tại đây:
cho 100 STN \(a_1,a_2,...,a_{100}\) thỏa mãn: \(\dfrac{1}{\sqrt{a_1}} \dfrac{1}{\sqrt{a_2}} ... \dfrac{1}{\sqrt{a_{100}... - Hoc24
Lời giải:Giả sử trong 100 số tự nhiên $a_1,a_2,...,a_{100}$ không có 2 số nào bằng nhau. Khi đó:
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
Mà:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 19\)
Do đó \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}< 19\) (trái với giả thiết)
Suy ra điều giả sử là sai. Tức là trong 100 số tự nhiên có 2 số bằng nhau (đpcm)
Bạn có thể xem cách chứng minh \(\sum_{n=1}^{100} \frac{1}{\sqrt{n}}< 19\) tại đây:
Chứng minh rằng \(2\left(\sqrt{n 1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) (với \(n\in... - Hoc24
\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)
\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
Giả sử 100 số tự nhiên đã cho đôi một khác nhau và \(a_1\ge1\),\(a_2\ge2\),..\(a_{100}\ge100\)( vì a là số tự nhiên)
\(\Rightarrow S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\)
Ta có điều sau:\(\dfrac{1}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}+\sqrt{n}}< \dfrac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-\sqrt{n-1}\)
\(\Rightarrow S< 1+2.\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=1+2.\left(10-1\right)=19\)( trái với giả thiết)
nên có ít nhất 2 trong 100 số đã cho bằng nhau .