K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

Bạn tham khảo tại đây nhé: Câu hỏi của Vương Hàn.

Chúc bạn học tốt!

20 tháng 9 2019

Vũ Minh TuấnBăng Băng 2k6Lê Thị Thục Hiền@Nk>↑@Trần Thanh PhươngMo Nguyễn VăntthNguyễn Thị Diễm Quỳnhlê thị hương giang

7 tháng 11 2016
  • Xét 4 số: a1; a2; a3; a4; 4 số này khi chia cho 3 chỉ có thể dư 0; 1; 2. Có 4 số mà chỉ có 3 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 3, hiệu của chúng chia hết cho 3
  • Tương tự xét 4 số a2; a3; a4; a5 và => 4 số này tạo ra ít nhất 1 hiệu chia hết cho 3

Từ 2 điều trên => D chia hết cho 9 (1)

Có 5 số nguyên mà chỉ có 2 loại số lẻ và chẵn nên theo nguyên lí Đi rich let có ít nhất 3 số cùng lẻ (chẵn)

  • Nếu cả 5 số đó cùng chẵn hoặc cùng lẻ ta dễ dàng => D chia hết cho 32
  • + Nếu trong 5 số, có 1 số lẻ, 4 số chẵn, không mất tính tổng quát ta giả sử 4 số đó là a1; a2; a3; a4, dễ dàng => D chia hết cho 32

+ Nếu trong 5 số, có 1 số chẵn, 4 số lẻ tương tự như trên cũng => D chia hết cho 32

  • + Nếu trong 5 số, có 3 số chẵn, 2 số lẻ ; 3 số chẵn này khi chia cho 4 chỉ có thể dư 0 hoặc 2. Có 3 số mà chỉ có 2 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 4, hiệu của chúng chia hết cho 4 cộng với 3 hiệu còn lại chia hết cho 2 tạo bởi 3 số chẵn (trừ trường hợp trên) và 2 số lẻ cũng => D chia hết cho 32

+ Xét tương tự với trường hợp trong 5 số có 3 số lẻ, 2 số chẵn

Vậy trong các trường hợp ta luôn được D chia hết cho 32 (2)

Từ (1) và (2), do (9;32)=1 => D chia hết cho 288 (đpcm)

14 tháng 3 2018

a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{2012^2}-1\right)\)(có 1006 số hạng nên tích của A là số dương)

\(\Rightarrow A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{2012^2}\right)\)

\(\Rightarrow A=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{2012^2-1}{2012^2}\right)\)

\(\Rightarrow A=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{2011\cdot2013}{2012^2}\)

\(\Rightarrow A=\text{​​}\frac{2013}{2\cdot2012}=\frac{2013}{4024}\)

5 tháng 9 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có: 

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1+a_2+a_3}{a_2+a_3+a_4}\)

=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\left(\frac{a_1+a_2+a_3}{a_2+a_3+a_4}\right)^3\)

=> \(\frac{a_1}{a_4}=\left(\frac{a_1+a_2+a_3}{a_2+a_3+a_4}\right)^3\left(đpcm\right)\)

18 tháng 11 2018

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=.....=\frac{an}{an+1}=\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\)

\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\frac{a3}{a4}\cdot...\cdot\frac{an}{an+1}=\frac{a1}{an+1}=\left(\frac{a1}{a2}\right)^n=\left(\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\right)^n\)(vì từ 1 đến n có n chữ số)

=> đpcm

16 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\)

Ta có: \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (1)

\(\frac{a_2}{a_3}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2)

.............

\(\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2008)

Nhân (1),(2),...,(2008) vế với vế ta có:

\(\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot\cdot\cdot\cdot\frac{a_{2008}}{a_{2009}}=\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\) (đpcm)

25 tháng 11 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=....=\dfrac{a_{2000}}{a_{2001}}=\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\)

\(\Rightarrow\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}......\dfrac{a_{2000}}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)

\(\Rightarrow\dfrac{a_1}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)(đpcm)