Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=k\)
\(\Rightarrow\hept{\begin{cases}a=5k\\b=6k\\c=7k\end{cases}}\)
\(\Rightarrow ab=5k\cdot6k=30k^2\)
\(\Rightarrow30k^2=3000\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
\(k=10\Rightarrow\hept{\begin{cases}a=5\cdot10=50\\b=6\cdot10=60\\c=7\cdot10=70\end{cases}}\)
b, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{a^2-b^2+c^2}{25-36+49}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{152}{38}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow4=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\hept{\begin{cases}a^2=4\cdot25=100\\b^2=4\cdot36=144\\c^2=4\cdot49=196\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=\pm10\\b=\pm12\\c=\pm14\end{cases}}\)
a) Ta có (am)n = am.am...am (định nghĩa) (có n thừa số am)
= am + m + .... + m (có n hạng tử m)
= am.n (đpcm)
b) Ta có 5333 = 53.111 = (53)111 = 125111
3555 = 35.111 = (35)111 = 243111
Nhận thấy 125 < 243
=> 125111 < 243111
=> 5333 < 3555
b) Ta có 2400 = 24.100 = (24)100 = 16100
4200 = 42.100 = (42)100 = 16100
=> 2400 = 4200 (= 16100)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
Xét a>b thì:
\(am>bm\Rightarrow ab+am>ab+bm\)
\(\Rightarrow a\left(b+m\right)>b\left(a+m\right)\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Xét a=b thì \(a+m=b+m\Rightarrow\frac{a}{b}=\frac{a+m}{b+m}\)
Xét a<b thì \(am< bm\Rightarrow ba+am< ba+bm\)
\(\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
@Phan Gia Huy@Từ a> b không thể suy ra am > bm
Vì nếu như m âm thì bất đẳng thức sẽ đổi chiều.Kể cả trường hợp dưới
Mk chỉ góp ý thôi
ĐKXĐ: \(c\ne0\)
Có: \(\hept{\begin{cases}a+\frac{b}{c}=11\\b+\frac{a}{c}=14\end{cases}\Leftrightarrow}a+b+\frac{a+b}{c}=25\)
\(\Leftrightarrow\left(a+b\right)\left(1+\frac{1}{c}\right)=\frac{a+b}{c}\cdot\left(c+1\right)=25\)
Vì \(c+1\ne1\)
nên: \(\frac{a+b}{c}=1\)hoặc \(\frac{a+b}{c}=5\)hoặc \(\frac{a+b}{c}=-5\)
Đáp án cần chọn là: A