Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy
\(12⋮3\\ 15⋮3\\ 21⋮3\)
Để \(A⋮3\) thì \(x⋮3\)
Để \(A⋮̸3\) thì \(x⋮̸3\)
Để \(A⋮3\Rightarrow12+15+21+x⋮3\)
Mà : \(12⋮3\) ; \(15⋮3\) ; \(21⋮3\)
\(\Rightarrow x⋮3\left(x\in N\right)\Rightarrow x=3k\left(k\in N\right)\)
Để \(A⋮̸\) 3 \(\Rightarrow12+15+21+x⋮̸\) 3 \(\left(x\in N\right)\)
Mà : \(12⋮3\) ; \(15⋮3\) ; \(21⋮3\)
\(\Rightarrow x⋮̸\) 3 \(\Rightarrow x=3k+r\left(r\in\left\{1;2\right\}\right)\)
Vậy ...
Để A chia hết cho 3 thì:
\(1212+15+21+x⋮3\)
Mà: 1212,15,21 đều chia hết cho 3 nên x cũng chia hết cho 3.
\(\Rightarrow x\in B\left(3\right)\)
Như vậy để x không chia hết cho 3 thì:
\(\Rightarrow x\in B\left(3k+1\right),x\in\left(3k+2\right)\)
a/ A=3087 + x = 9.343 + x. Để A chia hết cho 9 => x = bội của 9
Để A không chia hết cho 9 => x là tập hợp các số không chia hết cho 9
b/ để 548* chia hết cho 5 thì * = {0; 5}
Với * = 0 thì 548* = 5480 không chia hết cho 3
Với * = 5 thì 548* = 5485 không chia hết cho 3
=> không có số * nào thuộc N thoả mãn điều kiện đề bài
c/
>> Để 735a2b chia hết cho 5 nhưng không chia hết cho 2 => b = 5 => 735a2b = 735a25
Để 735a25 chia hết cho 9 => 7+3+5+a+2+5=22+a phải chia hết cho 9 => a=5
>> Để 7a142b chia hết cho cả 2 và 5 => b=0 => 7a142b = 7a1420
Để 7a1420 chia hết cho 9 => 7+a+1+4+2=14+a phải chia hết cho 9 => a=4