K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

+) 2A không là số chính phương

Các thừa số trong tích A đều lẻ nên 2A không chia hết cho 4

Mà 2A chia hết cho 2 nên 2A không là số chính phương

+) 2A - 1 không là số chính phương

Ta có: 2A - 1  = (2A - 3) + 2

Mà \(A⋮3\)(vì A chứa thừa số 3) nên \(2A⋮3\)

\(\Rightarrow2A-3⋮3\)nên (2A - 3) + 2 chia 3 dư 2

Mà số chính phương khi chia cho 3 chỉ có thể dư 0 hoặc 1 nên 2A - 1 không là số chính phương

+) 2A + 1 không là số chính phương

Giả sử 2A + 1 là số chính phương thì 2A + 1 = k2 (k lẻ do 2A + 1 lẻ)

\(\Rightarrow2A=k^2-1=\left(k+1\right)\left(k-1\right)\)

Mà \(\left(k+1\right)\left(k-1\right)⋮4\)(do 2 lẻ nên k + 1 và k - 1 chẵn)

Mà 2A không chia hết cho 4 nên điều giả sử là sai

Vậy 2A; 2A + 1; 2A - 1 không là số chính phương (đpcm)

9 tháng 7 2017

\(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)

\(\Rightarrow2.\left(a-b\right).\left(a+b\right)+\left(a-b\right)=b^2\)

\(\Rightarrow\left(a-b\right).\left(2a+2b+1\right)=b^2\left(1\right)\)

Gọi \(d=ƯCLN ( a-b;2a+2b+1)\)

\(\Rightarrow a-b\) chia hết cho d và \(2a+2b+1\) chia hết cho d.

\(\Rightarrow b^2=\left(a-b\right).\left(2a+2b+1\right)\) chia hết cho \(d^2.\)

\(\Rightarrow b\) chia hết cho d.

Lại có: \(2.(a-b)-(2a+2b+1)\) chia hết cho d.

\(\Rightarrow d=-4b-1\) chia hết cho d.

\(\Rightarrow1\) chia hết cho d.

\(\Rightarrow d=1\)

\(\Rightarrow a-b\)\((2a+2b+1)\) nguyên tố cùng nhau. ( 2 )

Từ ( 1 ) và ( 2 ) suy ra: \(a-b\)\(2a+2b+1\) là số chính phương. ( đpcm )

28 tháng 8 2015

a) Để y dương thì 2a-1 < 0

=> 2a < 1

=> a < \(\frac{1}{2}\)

b) Để y âm thì 2a-1 > 0

=> 2a > 1

=> a > \(\frac{1}{2}\)

c) Để y ko âm, ko dương thì 2a-1 = 0

=> 2a = 1

=> a = \(\frac{1}{2}\)

Tick cho mik nha