K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Gọi tọa độ I(x,y) \(\Rightarrow\overrightarrow{IA}=\left(1-x,3-y\right),\overrightarrow{IB}=\left(-2-x,3-y\right) \)

Theo đề bài \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\Rightarrow\begin{cases}1-x-2-x=0\\3-y+3-y=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}\) \(\Rightarrow I\left(-\frac{1}{2},3\right)\)

10 tháng 12 2016

= vectơ 0

NV
21 tháng 4 2020

Câu 3:

Chắc pt đường tròn là \(\left(x-2\right)^2+\left(y+\frac{3}{2}\right)^2=25\)

Gọi d là đường thẳng qua M. Đường tròn tâm \(I\left(2;-\frac{3}{2}\right)\)

Áp dụng định lý Pitago:

\(d\left(I;d\right)=\sqrt{5^2-\left(\frac{8}{2}\right)^2}=3\)

Phương trình d qua M có dạng:

\(a\left(x+1\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+a-3b=0\)

Theo công thức khoảng cách:

\(d\left(I;d\right)=\frac{\left|2a-\frac{3}{2}b+a-3b\right|}{\sqrt{a^2+b^2}}=3\Leftrightarrow\left|2a-3b\right|=2\sqrt{a^2+b^2}\)

\(\Leftrightarrow\left(2a-3b\right)^2=4\left(a^2+b^2\right)\Leftrightarrow5b^2-12ab=0\)

\(\Rightarrow\left[{}\begin{matrix}b=0\\5b=12a\end{matrix}\right.\)

Chọn \(b=12\Rightarrow a=5\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x+1=0\\5x+12y-31=0\end{matrix}\right.\)

NV
21 tháng 4 2020

Câu 2:

Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M là nghiệm:

\(\left\{{}\begin{matrix}x+y-2=0\\-x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{1}{2};\frac{5}{2}\right)\)

Do \(d_1\) có hệ số góc \(-1\Rightarrow d_1\) tạo với chiều âm trục Ox 1 góc 45 độ

\(d_2\) có hệ số góc \(1\Rightarrow d_2\) tạo với chiều dương trục Ox 1 góc \(45^0\)

\(\overrightarrow{n_{d1}}.\overrightarrow{n_{d2}}=0\Rightarrow d_1\perp d_2\)

\(\Rightarrow\) 3 giao điểm của \(d_1;d_2;Ox\) tạo thành một tam giác vuông cân tại M

\(\Rightarrow\) hai đường phân giác góc tạo bởi \(d_1\)\(d_2\) lần lượt vuông góc với Ox và Oy

\(\Rightarrow\) Hai đường phân giác góc tạo bởi d1 và d2 lần lượt có pt là \(\left[{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{5}{2}\end{matrix}\right.\)

- TH1: tâm I của đường tròn nằm trên \(x=-\frac{1}{2}\Rightarrow I\left(-\frac{1}{2};b\right)\)

\(\Rightarrow\overrightarrow{IA}=\left(\frac{3}{2};-b\right)\Rightarrow R^2=IA^2=b^2+\frac{9}{4}\)

Mặt khác theo công thức khoảng cách:

\(d\left(I;d_1\right)=R\Rightarrow\frac{\left|-\frac{1}{2}+b-2\right|}{\sqrt{2}}=R\Rightarrow\frac{\left(b-\frac{5}{2}\right)^2}{2}=R^2\)

\(\Rightarrow b^2+\frac{9}{4}=\frac{\left(b-\frac{5}{2}\right)^2}{2}\Leftrightarrow2b^2+\frac{9}{2}-\left(b-\frac{5}{2}\right)^2=0\)

Nghiệm lại xấu nữa, bạn tự giải tiếp

TH2: tâm I của đường tròn nằm trên \(y=\frac{5}{2}\Rightarrow I\left(a;\frac{5}{2}\right)\) làm tương tự TH1

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>-m=4

hay m=-4

b: PTHĐGĐ là:

\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Leftrightarrow x^2-4x+2m-2=0\)

\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)

\(=16-8m+8=-8m+24\)

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

hay m<3

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)

Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)

=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)

\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)

\(\Leftrightarrow m^2-6m-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)

Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm) Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1 Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=\(\frac{1}{2}\)x2 Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1) Bài...
Đọc tiếp

Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm)

Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1

Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=\(\frac{1}{2}\)x2

Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1)

Bài 3: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3)

Bài 4:Cho hàm số y=2x-5 có đồ thị là đường thẳng (d)

a.Gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox,Oy. Tính tọa độ các điểm A,B và vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy

b.Tính diện tích tam giác AOB

HELP!!

0
NV
3 tháng 11 2019

\(A\left(-2;2\right)\) ; \(B\left(1;1\right)\Rightarrow\) A và B nằm cùng phía so với Ox

Trong tam giác ABM, áp dụng BĐT tam giác ta có:

\(T=\left|MA-MB\right|\le AB\Rightarrow T_{max}=AB\) khi A;B;M thẳng hàng hay M là giao điểm của đường thẳng AB và Ox

Gọi pt AB: \(y=ax+b\Rightarrow\left\{{}\begin{matrix}-2a+b=2\\a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow y=-\frac{1}{3}x+\frac{4}{3}\)

Tọa độ M là nghiệm của hệ: \(\left\{{}\begin{matrix}y=-\frac{1}{3}x+\frac{4}{3}\\y=0\end{matrix}\right.\) \(\Rightarrow M\left(4;0\right)\)

Bài 2:

Đường thẳng có hsg bằng 4 \(\Rightarrow a-2=4\Rightarrow a=6\Rightarrow y=4x+b\)

Do (d) qua M nên \(4.1+b=-3\Rightarrow b=-7\)