Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giống nhau:
- Đều là các số tự nhiên
Khác nhau:
-số nguyên tố tự nhiên chỉ có hai ước là 1 và chính nó
-Hợp số là số tự nhiên có nhiều hơn hai ước
Tích của hai số nguyên tố là hợp số bởi ngoài ước là 1 ra nó còn có ước là hai số nguyên tố đó nữa.
\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)
Vậy \(\left(3n\right)^{100}⋮81\)
Chúc em học tốt!
Tuy có vẻ hơi muộn nhưng thôi
Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)
Thật vậy, ta có :
72004 với lũy thừa là 2004 ⋮ 4
⇒ 72004 = ( .......... 9 )
392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4
⇒ 392^94 = ( .......... 9 )
⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10
⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)
A=1/10.(72004-392^94) là số tự nhiên.
Sô tự nhiên chia hêt cho 2: 740,470,704,
Sô chia hêt cho5:740,470,
Sô chia hêt cho 2,5:740,470
ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ
\(\left(2^{19}.27^3+15.4^9.9^4\right):\left(6^9.2^{10}+12^{10}\right)\)
\(=\left[2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4\right]:\left[2^9.3^9.2^{10}+2^{10}.6^{10}\right]\)
\(=\left(2^{19}.3^9+3.5.2^{18}.3^8\right):\left(2^{19}.3^9+2^{10}.2^{10}.3^{10}\right)\)
\(=\left(2^{19}.3^9+5.3^9.2^{18}\right):\left(2^{19}.3^9+2^{20}.3^{10}\right)\)
\(=2^{18}.3^9.\left(1.2+5\right):2^{19}.3^9.\left(1+2.3\right)\)
\(=\left(2^{18}.3^9.7\right):\left(2^{18}.2.3^9.7\right)\)
\(=1:2\)
\(=0.5\)
Gọi \(3\) số tự nhiên liên tiếp là : \(a\)\(;\) \(a+1\)\(;\) \(a+2\) \(\left(a\in N\right)\)
Khi chia \(a\) cho \(3\) ta có các trường hợp :
\(TH1:\) \(a=3k\left(k\in N\right)\Rightarrow a⋮3\) \(\rightarrowđpcm\)
\(TH2:\) \(a=3k+1\left(k\in N\right)\Rightarrow a+2=3k+3⋮3\) \(\rightarrowđpcm\)
\(TH2:a=3k+2\left(k\in N\right)\Rightarrow a+1=3k+3⋮3\) \(\rightarrowđpcm\)
Vậy trong \(3\) số tự nhiên liên tiếp luôn có \(1\) số chia hết cho \(3\)
\(\rightarrowđpcm\)
~ Chúc bn học tốt ~
Gọi 3 số tự nhiên liên tiếp lần lượt là a, a+1, a+2 (a \(\in\) N )
Xét 3 trường hợp :
+ a = 3k ( k \(\in\) N )
=> a \(⋮\) 3
+ a = 3k + 1
=> a+2 = 3k + 1 + 2
= 3k + ( 1 + 2 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+2) \(⋮\) 3
+ a = 3k + 2
=> a+1 = 3k + 2 + 1
= 3k + ( 2 + 1 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+1) \(⋮\) 3
Vậy trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Ta có: \(\left|x-y\right|+\left|x-1\right|\ge0\)
\(\Rightarrow A=\left|x-y\right|+\left|x-1\right|+2017\ge2017\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|x-1\right|=0\end{matrix}\right.\Rightarrow x=y=1\)
Vậy \(MIN_A=2017\) khi x = y = 1
Ta có: \(\dfrac{5a+7b}{6a+5b}=\dfrac{29}{28}\\ \Rightarrow28\left(5a+7b\right)=29\left(6a+5b\right)\\ \Rightarrow140a+196b=174a+145b\\ =140a-174a=-196b+145b\\ =-31a=-51b\\ \Rightarrow\dfrac{a}{-51}=\dfrac{b}{-31}\\ \Rightarrow a:b=-51:\left(-31\right)\\ \Rightarrow\dfrac{a}{b}=\dfrac{-51}{-31}\Rightarrow\dfrac{a}{b}=\dfrac{51}{31}\\ \Rightarrow\dfrac{a}{b}=\dfrac{3}{2}\Rightarrow a=3;b=2\)
Vậy a=3 và b=2
hân chéo ta được:
28(5a+7b)=29(6a+5b)28(5a+7b)=29(6a+5b)
\Leftrightarrow 140a+196b=174a+145b140a+196b=174a+145b
\Leftrightarrow 51b=34a51b=34a
Vì a,b là 2 số nguyên tố cùng nhau và là số tự nhiên
\RightarrowƯCLN(51,34)=17ƯCLN(51,34)=17
Từ đây ta tính được a=3;b=2a=3;b=2
p/s: Cách làm trên chưa thật hợp lý, bạn có thể trình bày sao cho hiểu là được nhé !
Học lớp mấy vậy?
6