K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

 

 A = 1+2+2^2+...+2^2015

 =>2A=2+22+23+...+22016

=>2A-A=2+22+23+...+22016-1-2-22-...-22015

=>A=22016-1=B

Vậy A=B

11 tháng 10 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

5 tháng 10 2015

\(A=2^{2014.2015}.5^{2014.2015}\)

\(B=2^{2015.2014}.5^{2015.2014}\)

Vậy A = B

5 tháng 10 2015

Haha , Việt làm sai đâu phải nhân đâu              

1: 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180}{9}=20\)

Do đó: a=40; b=60; c=80

Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\)

nen BC<AC<AB

2: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{4}}=\dfrac{b+c}{\dfrac{1}{3}+\dfrac{1}{4}}=\dfrac{70}{\dfrac{7}{12}}=120\)

Do đó: b=40; c=30

Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)

nên BC>AC>AB

28 tháng 6 2015

mình chỉ làm đc câu a và d thôi bạn có **** k? nếu **** thì liên hệ mình làm cho

24 tháng 12 2017

mình chỉ biết câu a thui nha thông cảm 

3S+2 =22017 

Vậy là chứng minh được rồi ^ ^

7 tháng 3 2018

Mình chỉ biết làm câu a thôi còn câu b bạn tự làm nhé

a) Ta có : \(S=2+2^3+2^5+2^7+.....+2^{2015}\)

                    \(\Rightarrow4S=2\cdot4+2^3\cdot4+2^5\cdot4+2^7\cdot4+...+2^{2015}\cdot4\)

                    \(\Leftrightarrow2^3+2^5+2^7+...+2^{2015}+2^{2017}\)

  Mà S = ( 4S - S) :3

                     \(\Rightarrow S=\left[\left(2^3+2^5+2^7+..+2^{2017}\right)-\left(2+2^3+2^5+2^7+...+2^{2015}\right)\right]:3\)

                               \(=\frac{\left(2^{2017}-2\right)}{3}\)

=> 3S + 2     \(=3\cdot\frac{2^{2017}-2}{3}+2\)

                     \(=\frac{3\left(2^{2017}-2\right)}{3}+2\)

                      \(=\frac{2^{2017}-2}{1}+2\)

                       \(=2^{2017}-2+2\)

                        \(=2^{2017}\)

  Mà 22017 là một lũy thừ của 2

=> 3S + 2 cũng là một lũy thừ của 2 (đpcm)