K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 3 2021

A đạt giá trị lớn nhất khi và chỉ khi \(15-x\) là số dương nhỏ nhất

\(\Rightarrow15-x=1\Rightarrow x=14\)

5 tháng 11 2017

Với mọi x ta có:

|x - 2001| = |2001 - x|

=> A = |x - 2002| + |2001 - x|

Với mọi x ta cũng có:

|x - 2002| + | 2001 - x| \(\ge\)|(x - 2002) + (2001 - x)|

A \(\ge\) |1|

A \(\ge\) 1

Dấu bằng xảy ra <=> (x - 2002).(2001 - x) \(\ge\) 0

=> x - 2002 \(\ge\) 0; 2001 - x \(\ge\) 0 (1)

hoặc x - 2002 \(\le\) 0; 2001 - x \(\le\) 0 (2)

Từ (1) => x > hoặc = 2002; x < hoặc = 2001 => x không có giá trị thoả mãn

Từ (2) => x < hoặc = 2002 ; x > hoặc = 2001 => 2001 \(\le\) x \(\le\) 2002

Vậy 2001 \(\le\) x \(\le\) 2002 thì A có giá trị nhỏ nhất = 1

26 tháng 6 2017

\(xy-x-y+1=0\)

\(\Rightarrow x.\left(y-1\right)-\left(y-1\right)=0\)

\(\Rightarrow\left(y-1\right).\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}y-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy \(x=y=1\)

Chúc bạn học tốt!!!

26 tháng 6 2017

Tìm x,y biết:

xy-x-y+1=0

=> x(y-1)-y=0-1

=> x(y-1)- (y-1)= (-1)

=> (y-1)(x-1)=(-1)

\(\Rightarrow\left[{}\begin{matrix}y-1=1;x-1=-1\\y-1=-1;x-1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2;x=0\\y=0;x=2\end{matrix}\right.\)

16 tháng 9 2017

Ta có :

\(\left|x-1,5\right|+\left|2,5-x\right|=0\)

\(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) (vô lí)

Vậy ko tìm dc x thỏa mãn theo yêu cầu

16 tháng 9 2017

Có tìm đc gt thỏa mãn:

\(\left\{{}\begin{matrix}x_1=1,5\\x_2=2,5\end{matrix}\right.\)

18 tháng 6 2017

khó v linh hồn

18 tháng 6 2017

\(x>y\Leftrightarrow x-y>0\) với mọi \(x;y\in Q\)

Chúc bạn học tốt!!!

P/s: lần sau nhớ nghĩ trước khi đăng

14 tháng 3 2017

mình ra từ hồi chiều nhưng bây giờ mới rảnh để chỉ cho bạn, xin lỗi nhé

x - y = 2

<=> y = x - 2

\(A=xy+4\\ =x\left(x-2\right)+4\\ =x^2-2x+4\\ =\left(x-1\right)^2+3\)

\(\left(x-1\right)^2\ge0\forall\)

=> (x-1)2 + 3 \(\ge3\)

=> (x-1)2 + 3 min = 3

=> A min = 3 (??, mình làm min đựoc thôi, còn max thì chịu)

bài kia cũng thế, thay y = x-2 vào rồi tính ra ???

Bn "Lưu Hiền" có thể nói cho mình biết tại sao lại :

x\(^2\)- 2x+4

=> ( x - 1)\(^2\)+3

Mình ko hiểu lắm.hum

Bài1:

\(M=\dfrac{9-x}{4-x}=1+\dfrac{5}{4-x}\)

Để M đạt giá trị lớn nhất thì 4-x phải đặt giá trị nhỏ nhất

=>4-x đạt giá trị là số nguyên dương nhỏ nhất có thể

=>4-x=1

=>x=3

Thay x=3 vào M,ta có:

\(M=\dfrac{9-3}{4-3}=\dfrac{6}{1}=6\)

Vậy....

Bài2:

\(\left(x-2\right)^2+\left(2y-1\right)^2\)

Với mọi x;y thì \(\left(x-2\right)^2>=0;\left(2y-1\right)^2>=0\)

=>\(\left(x-2\right)^2+\left(2y-1\right)^2>=0\)

Để \(\left(x-2\right)^2+\left(2y-1\right)^2=0\) thì

\(\left(x-2\right)^2=0\)\(\left(2y-1\right)^2=0\)

=>\(x-2=0\)\(2y-1=0\)

=>\(x=2vay=\dfrac{1}{2}\)

Vậy....

9 tháng 9 2017

\(M=\dfrac{9-x}{4-x}=\dfrac{5+4-x}{4-x}=\dfrac{5}{4-x}+\dfrac{4-x}{4-x}=\dfrac{5}{4-x}+1\)Để \(max_M\) thì \(\dfrac{5}{x-4}\) phải là số nguyên lớn nhất có thể

Vậy \(\dfrac{5}{x-4}=5\Rightarrow x=3\)

Thay vào biểu thức:

\(max_M=\dfrac{9-3}{4-3}=6\)

\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^2+\left(2y-1\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

22 tháng 3 2017

P= \(x^{2y5}-3y^3+3x^3-x^3y-2015\)

22 tháng 3 2017

P +Q =0 => P = -Q = x2y5 - 3y3 + 3x3 - x3y -2015

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)