K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Đặt\(A=3^{2012}-3^{2011}+3^{2010}-3^{2009}+...+3^2-3+1\)

\(\Rightarrow3A=3^{2013}-3^{2012}+3^{2011}-3^{2010}+...+3^3-3^2+3\)

\(\Rightarrow A+3A=\left(3^{2012}-3^{2011}+3^{2010}-3^{2009}+...+3^2-3+1\right)+\left(3^{2013}-3^{2012}+3^{2011}-3^{2010}+...+3^3-3^2+3\right)\)\(\Rightarrow4A=3^{2013}+1>1\Rightarrow A>\frac{1}{4}\)

Vậy \(A>\frac{1}{4}\)

4 tháng 3 2018

a) \(\frac{1}{8}.16^n=2^n\)

\(\frac{2^n}{16^n}=\frac{1}{8}\)

\(\left(\frac{2}{16}\right)^n=\frac{1}{8}\)

\(\left(\frac{1}{8}\right)^n=\frac{1}{8}\)

=> n = 1