Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1+2+22+23+...+22008
2A = 2+22+23+24+...+22009
2A - A = 22009 - 1
=> A = 22009 - 1
=> B - A = 22009 - (22009 - 1)
=> B - A = 22009 - 22009 + 1
=> B - A = 1
A = 1 + 2+22+23+....+22008
2A = 2 + 22+23+24+.....+22009
A = 2A - A = 22009 - 1
Vậy B - A = 22009 - (22009 - 1) = 22009 - 22009 + 1 = 1
A = 2+22+23+....+22008
2A = 22+23+24+.....+22009
A = 2A - A = 22009 - 2
Vậy B - A = 22009 - (22009 - 2) = 22009 - 22009 + 2 = 2
A = 1 + 2 + 22 + 23 + ... + 22008
2A = 2 + 22 + 23 + 24 + ... + 22009
2A - A = (2 + 22 + 23 + 24 + ... + 22009) - (1 + 2 + 22 + 23 + ... + 22008)
A = 22009 - 1
A - B = (22009 - 1) - 22009
A - B = -1
\(A=1+2+2^2+2^3+...+2^{2008}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2009}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(A=2^{2009}-1\)
\(\Rightarrow A-B=2^{2009}-1-2^{2009}=-1\)
\(A=2+2^2+2^3+...+2^{2008}\)
\(2A=2^2+2^3+2^4+...+2^{2009}\)
\(A=2A-A=2^{2009}-1\)
Vậy \(B-A=2^{2009}-\left(2^{2009}-1\right)=2^{2009}-2^{2009}+1=1\)
A=1+2+22+23+....+22008
=>2A=2+22+23+24+....+22009
=>2A-A=22009-1
=>A=22009-1
=>B-A=22009-22009+1=1
1)Đặt A=1+2+22+23+.....+22008
=>2A=2+22+23+....+22009
=>2A-A=(2+22+23+...+22009)-(1+2+22+23+....+22008)
=-1+22009
Ta có A=\(1+2+2^2+2^3+...+2^{2008}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2009}\)
\(\Rightarrow2A-A=2+2^2+2^3+2^4+...+2^{2009}-\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2009}-1-2-2^2-2^3-...-2^{2008}\)
\(\Rightarrow A=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-\left(2^{2009}-1\right)\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1\)
\(\Rightarrow B-A=1\)
Vậy B - A =1
nhớ k mình nha bạn
Ta có :
A = 1 + 2 + 22 + 23 + ... + 22008
2A = 2 + 22 + 23 + 24 + ... + 22009
2A - A = ( 2 + 22 + 23 + 24 + ... + 22009 ) - ( 1 + 2 + 22 + 23 + ... + 22008 )
A = 22009 - 1
\(\Rightarrow\)B - A = 22009 - ( 22009 - 1 ) = 22009 - 22009 + 1 = 1
\(2A\)\(=\)\(2^2+2^3+2^4+......+2^{2009}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)\(A=2^{2009}-1\)
\(B-A=2009-\left(2009-1\right)\)
\(B-A=1\left(ĐPCM\right)\)
\(A=1+2+2^2+2^3+...+2^{2008}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2009}\)
\(\Rightarrow A=2A-A=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-\left(2^{2009}-1\right)\)
\(=2^{2009}-2^{2009}+1\)
\(=1\)
Bằng 1 nhé!