Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
\(A=\frac{99.100.101}{3}=333300\)
\(B=\frac{2015.2016.2017.2018}{4}-\frac{6.7.8.9}{4}=4133639960604\)
\(C=\frac{3^{51}-1}{3}+1\)
3A= 1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3a= 99.100.101
a/ A= 1-3+5-7+9-11+......+97-99
= -2+(-2)+(-2)+......+(-2)
= (-2).25=-50
b/B=-1-2-3-4-...-100
=-(1+2+3+4+...+100)
=-5050
c/C=1-2+3-4+5-6+......+99-100
= -1+(-1)+(-1)+.............+(-1)
=(-1).50=-50
d/D=1-2-3+4+5-6-7+8+9-....+94-95
= (1-2-3+4)+(5-6-7+8)+.......+(92-93-94+95)
= 0+0+0+...+0=0
Tính hợp lí:
a)A=1-2+3-4+5-6+...+99-100
b)B=1+3-5-7+9+11-...-397-399
c)C=1-2-3+4+5-6-7+...+97-98-99+100
a) A = 1 + 2 + 3 + 4+... + 50;
Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,
b) B = 2 + 4 + 6 + 8 + ...+100;
Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)
Do đó B = (2 +100).50 : 2 = 2550.
c) C = 1 + 3 + 5 + 7 +... + 99;
Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)
Do đó C = (1 + 99). 50 : 2 = 2500.
d) Tương tự ta có D = 1650
d = 2 + 5 + 8 + 11 .... 98
= ( 92 - 2 ) : 3 + 1 = 33
= 33 . ( 98 + 2 ) : 2
= 1650
a) A = 1 + 2 + 3 + 4+... + 50;
Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,
b) B = 2 + 4 + 6 + 8 + ...+100;
Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)
Do đó B = (2 +100).50 : 2 = 2550.
c) C = 1 + 3 + 5 + 7 +... + 99;
Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)
Do đó C = (1 + 99). 50 : 2 = 2500.
d) Tương tự ta có D = 1650
tách A ra: \(A=n\left(n+1\right)=n^2+n=A_1+A_2\)
\(A_1=n^2\) tổng bình phương n số tự nhiên đầu tiên \(A_2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(A_2=n\) tổng n số tự nhiên đầu tiên \(A_2=\dfrac{n\left(n+1\right)}{2}\)
\(A=A_1+A_2=\dfrac{n\left(n+1\right)\left(2n+1\right)+3n\left(n+1\right)}{6}\)
\(A=\dfrac{n\left(n+1\right)\left(2n+1+3\right)}{6}=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}=\dfrac{99.100.101}{3}=33.100.101\)
\(C=A+10.11=3.11.100.101+10.11=10.11\left(3.10.101\right)\)