Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: ta có: \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FE}=\overrightarrow{AE}+\overrightarrow{CB}+\overrightarrow{FD}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FE}+\overrightarrow{EA}=\overrightarrow{CB}+\overrightarrow{FD}+\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{FA}=\overrightarrow{CB}+\overrightarrow{FC}\)
\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{FC}-\overrightarrow{FA}\)
\(\Leftrightarrow\overrightarrow{AC}=\overrightarrow{AC}\)(đúng)
Bạn coi lại đề, làm sao mà \(\overrightarrow{AB}=\overrightarrow{AE}+\overrightarrow{EA}\) được
Chuyển vế: \(\overrightarrow{AC}+\overrightarrow{BD}+\overrightarrow{EF}-\overrightarrow{AF}-\overrightarrow{BC}-\overrightarrow{ED}\)\(=\overrightarrow{AC}+\overrightarrow{BD}+\overrightarrow{EF}+\overrightarrow{FA}+\overrightarrow{CB}+\overrightarrow{DE}\)\(=\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\left(\overrightarrow{BD}+\overrightarrow{DE}\right)+\left(\overrightarrow{EF}+\overrightarrow{FA}\right)\)\(=\overrightarrow{AB}+\overrightarrow{BE}+\overrightarrow{EA}\)\(=\overrightarrow{AE}+\overrightarrow{EA}\)
\(=0\)
Suy ra: \(\overrightarrow{AC}+\overrightarrow{BD}+\overrightarrow{EF}=\overrightarrow{AF}+\overrightarrow{BC}+\overrightarrow{ED}\)
\(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{BM}+\overrightarrow{MN}+\overrightarrow{ND}\)
\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{BM}\right)+\left(\overrightarrow{NC}+\overrightarrow{ND}\right)=2\overrightarrow{MN}\)
Chắc là toàn vecto???
a/ \(=\left(\overrightarrow{EA}+\overrightarrow{AB}\right)+\left(\overrightarrow{BC}+\overrightarrow{CD}\right)=\overrightarrow{EB}+\overrightarrow{BD}=\overrightarrow{ED}\)
b/ \(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CD}+\left(\overrightarrow{DF}+\overrightarrow{FE}\right)\)
\(=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DE}=\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{AE}\)
Câu 1:
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó MN là đường trung bình
=>MN//BC và MN=BC/2(1)
Xét ΔHBC có
E là trung điểm của HB
F là trung điểm của HC
Do đó: EF là đường trung bình
=>EF//BC và EF=BC/2(2)
Từ (1) và (2) suy ra MN//EF và MN=EF
=>MNFE là hình bình hành
SUy ra: VECTO MN=VECTO EF