Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho 53 số nguyên tố khác nhau . Chứng minh rằng luôn tìm ra được 2 số mà hiệu của chúng chia hết 210
mình chỉ giải được câu 1 thôi nhé
số nguyên tố là số >1 có 2 ước
gọi số đó là 12k+9
a=12k+9 mà số nguyên tố là số >1 suy ra a >9 achia hết cho 3
vậy không có số nguyên tố thõa mãn
Nếu trong \(52\)số đã cho có hai số có cùng số dư khi chia cho \(100\)ta chỉ cần chọn hai số đó, có hiệu chia hết cho \(100\).
Nếu trong \(52\)số đã cho không có hai số nào có cùng số dư khi chia cho \(100\).
Xét các bộ \(0,\left(1,99\right),\left(2,98\right),...,\left(a,100-a\right),...,\left(49,51\right)\)(các số dư của các số khi chia cho \(100\))
Có \(51\)bộ mà có \(52\)số nên theo nguyên lí Dirichlet có ít nhất hai số thuộc một bộ.
Xét hai số thuộc bộ đó, dễ thấy tổng của chúng chia hết cho \(100\).
Ta có đpcm.
anh Đoàn Đức Hà ơi chỉ có 50 bộ thôi mà anh sao lại 51 bộ ạ