K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

Giả sử 51 số đó đều âm và tích 4 số đó âm .

=> Mâu thuẫn với đề bài

=> Tồn tại ít nhất 1 số dương

Lấy số dương  đó ra , còn lại 50 số  , chia thành 12 nhóm.

có 4 số bất kì có tổng đều âm

Vậy   51 số đó đều dương.

28 tháng 5 2015

a) Tổng của 4 số là 1 số dương nên chắc chắn trong 4 số đó có 1 số dương

Bớt số dương đó ra => còn lại 12 số . Chia 12 số đó thành 3 nhóm, mỗi nhóm có 4 chữ số

=> Giá trị mỗi nhóm là số dương => Tổng 12 số đó dương

Cộng với số dương đã bớt ra => tổng của 13 số đã cho dương

28 tháng 5 2015

Nhìn vào cái này thì thấy cái khác quay, hoa mắt quá !!!

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Lời giải:

Xét các số \(a_1,a_2,....,a_{51}\)

Ta có \(a_1a_2....a_{51}=(a_1a_2a_3)(a_4a_5....a_{51})>0\)

Vì cứ tích $4$ số bất kỳ đều dương nên tích của \(48\) số từ \(a_4\rightarrow a_{51}\) dương, do đó \(a_1a_2a_3>0\)

Mà theo đk đề bài thì \(a_1a_2a_3a_j>0 \) \((j=\overline{4;51})\) nên \(a_4,a_5,...,a_{51}>0\)

Khi đó \(a_4a_5a_6>0\)\(a_4a_5a_6a_1,a_4a_5a_6a_2,a_4a_5a_6a_1>0\) nên \(a_1,a_2,a_3>0\)

Ta có đpcm.

5 tháng 7 2017

Cảm ơn.

25 tháng 6 2015

giả sử 2015 số đã cho là:

a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015

Vì tích 3 số bất kỳ luôn luôn dương 

nên trong dãy số có nhiều nhất 2 số âm

\(\vec{ }\)

a1;a2 <0

ta có: a1.a2014.a2015 <0

mà đề cho:a1.a2014.a2015>0

\(\vec{ }\)

a1;a2 không thể âm

Do vậy 2015 số đã cho phải là số dương

26 tháng 6 2015

iả sử 2015 số đã cho là:

abé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015

Vì tích 3 số bất kỳ luôn luôn dương 

nên trong dãy số có nhiều nhất 2 số âm

$\vec{ }$→

a1;a2 <0

ta có: a1.a2014.a2015 <0

mà đề cho:a1.a2014.a2015>0

$\vec{ }$→

a1;a2 không thể âm

Do vậy 2015 số đã cho phải là số dương

6 tháng 7 2015

giả sử 2015 số đã cho là:

abé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015

Vì tích 3 số bất kỳ luôn luôn dương 

nên trong dãy số có nhiều nhất 2 số âm

$\vec{ }$→

a1;a2 <0

ta có: a1.a2014.a2015 <0

mà đề cho:a1.a2014.a2015>0

$\vec{ }$→

a1;a2 không thể âm

Do vậy 2015 số đã cho phải là số dương

30 tháng 6 2016

cô gợi ý em nhé !
Gọi 2004 số đó lần lượt là : \(a_1,a_2,a,_3......,a_{2004}\)
ta có \(a_1a_{ }_2a_3< 0,a_2a_{ }_3a_4< 0,a_1_{ }a_4a_5< 0\Rightarrow\left(a_{ }_1a_{ }_2a_3\right)\left(a_2_{ }a_{ }_3a_4\right)\left(a_{ }_1_{ }a_{ }_4a_5\right)< 0 \)
   \(\Leftrightarrow\left(a_1\right)^2\left(a_2\right)^2\left(a_3\right)^2.a_5< 0\Rightarrow a_{ }_5< 0\)
Tương tụ như vậy chúng ta sẽ chứng minh các số còn lại nhỏ hơn 0.

vậy tích của 2004 số đó dương (tích của một số chẵn các số âm ).
        

30 tháng 6 2016

Tôi không biết