K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

Ta sẽ dùng phản chứng 

Gọi 4 cạnh của tứ giác là a , b , c , d ( a,b,c,d \(\inℕ^∗\))

Giả sử không có bất kì 2 cạnh nào bằng nhau

Đặt \(\hept{\begin{cases}x=\frac{b+c+d}{a}\\y=\frac{c+d+a}{b}\\z=\frac{d+a+b}{c}\end{cases}}\left(x;y;z\inℕ^∗\right)\)(Do tổng 3 cạnh bất kì chia hết cho cạnh còn lại)

Theo bất đẳng thức trong tứ giác  thì dễ thấy \(x;y;z>1\)

Mà x,y,z là số tự nhiên nên \(x;y;z\ge2\)

Không mất tính tổng quát của bài toán ta giả sử a > b > c > d thì khi đó x < y < z

Ta có : \(\hept{\begin{cases}x\ge2\\y>x\end{cases}}\Rightarrow y\ge3\)

tương tự : \(z\ge4\)

Từ điều giả sử\(\Rightarrow\)  \(\hept{\begin{cases}b+c+d\ge2a\\c+d+a\ge3b\\d+a+b\ge4c\end{cases}}\)

Cộng 3 vế vào ta được \(2a+2b+2c+3d\ge2a+3b+4c\)

                               \(\Rightarrow3d\ge b+2c\)(Vô lí do b > c > d)

Nên điều giả sử là sai 

Vậy luôn tồn tại ít nhất 2 cạnh bằng nhau trong tứ giác đó

9 tháng 10 2015

Gọi 5 số đó là a; b; c; d; e . ta có a+ b + c + d + e = 1

Không mất tính tổng quát, giả sử  0 < a < b < c < d < e 

Nhận xét: c + d < \(\frac{2}{3}\). Vì nếu c + d > \(\frac{2}{3}\)

ta có: 2e > c + d >  \(\frac{2}{3}\) => e  > \(\frac{1}{3}\) => e + c + d > \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1 . Mâu thuẫn với a + b + c + d + e = 1; và a; b; c; d; e không âm

Áp dụng bđt Cô si ta có: cd < \(\frac{1}{4}\)(c + d)2 => c.d < \(\frac{1}{9}\)

Mặt khác, 1 = a + b + c + d + e a + 3b + e > 3b + e > 2.\(\sqrt{3be}\) => b.e < \(\left(\frac{1}{2\sqrt{3}}\right)^2=\frac{1}{12}\) < \(\frac{1}{9}\)

 +) ta có: a.e < b.e < \(\frac{1}{12}\) < \(\frac{1}{9}\); b.c < c.d < \(\frac{1}{9}\); d.a < d.c < \(\frac{1}{9}\)

=> có thể sắp xếp 5 số a; b; c;d; e theo thứ tự như sau: a; e; b; c ; d đều thỏa mãn tích 2 số bất kì cạnh nhau không vượt quá \(\frac{1}{9}\)