Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)
\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)
\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)
Dấu = khi \(x=y=z=1\)
a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)
Lấy \(T_0=a_0\)
\(T_1=a_0+a_1\)
\(T_2=a_0+a_1+a_2\)
\(T_3=a_0+a_1+a_2+a_3\)
\(T_4=a_0+a_1+a_2+a_3+a_4\)
Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:
TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh
TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.
Bài 1
Trong 3 số tự nhiên tùy ý chọn ( a, b, c ε N ), chứng minh rằng luôn có ít nhất 1 cặp số ( 2 số trong 3 số đó) mà tổng và hiệu của chúng chia hết cho 2.
Giải : Áp dụng quy tắc chẵn –lẻ
Xét các trường hợp:
· a, b, c cùng chẵn --> đương nhiên chọn bất kỳ cặp nào cũng có
tổng và cả hiệu của chúng là số chia hết cho 2
· a, b, c cùng lẻ --> đương nhiên chọn bất kỳ cặp nào cũng có
tổng và cả hiệu của chúng là số chia hết cho 2
· a, b, c có 1 cặp là số lẻ --> Hiệu và tổng của 2 số lẻ chia hết cho 2
· a, b, c có 1 cặp là số chẵn --> Hiệu và tổng của 2 số chẵn chia hết cho 2
Hai trường hợp đầu có 3 cặp số thỏa mãn đầu bài
Hai trường hợp cuối có 1 cặp số thỏa mãn đầu bài
---> Vậy có ít nhât 1 cặp số mà tổng và hiệu của chúng chia hết cho 2 (ĐPCM)
Bài 2
Trong 4 số tự nhiên tùy ý chọn ( a, b, c, d ε N ), chứng minh rằng luôn có ít nhất 1 cặp số ( 2 số trong 4 số đó) mà tổng hoặc hiệu của chúng chia hết cho 5.
Giải : Áp dụng qui tắc số dư
Ta thấy phép chia cho 5 có thể được các số dư là 0, 1, 2, 3, 4,
Xét các trường hợp:
· cả 4 số có số dư khác nhau (0,1,2,3);(0,2,3,4);(0,1 4,2); (0,4,2,3);(1,2,3,4)
bao giờ cũng có ít nhất 1 cặp số có số dư là (1+4) hoặc (2+3)
--> Tổng 1 cặp số đó chia hết cho 5
Với nhóm số có số dư (1,2,3,4) --> 2 cặp có tổng chia hết cho 5
· cả 4 số có số dư trùng nhau --> 6 cặp từng đôi một có hiệu = 0
--> chia hết cho 5
· 2 cặp có số dư trùng nhau --> Hiệu của 2 cặp đó = 0 --> chia hết cho 5
· 1 cặp có số dư trùng nhau --> Hiệu của 1 cặp đó = 0 --> chia hết cho 5
Vậy ít nhất cũng chọn ra 1 cặp số mà tổng hoặc hiệu của chúng chia hết cho 5.
Bài 3
Chứng minh rằng trong 7 số tự nhiên bất kỳ tùy chọn, bao giờ cũng có 4 số mà tổng của chúng chia hết cho 4
Giải:
Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)
A, B, C Và D, E, F mỗi nhóm có 1 cặp chia hết cho 2
* Giả thử (A+B) =2 m và (D+E)=2n --> (A+B) + (C+D)= 2(m+n)
Còn 3 số C F G sẽ có 1 cặp chia hết cho 2
( C + F) = 2 p Với m,n,p cúng là số tự nhiên
Trong 3 số m, n, p luôn chọn được 2 số có tổng chia hết cho 2.
*Giả thử (m + n) =2 q ( q là số TN) thì ta có
(A+B) + (C+D)= 2(m+n) = 4q ==> A+B+C+D chia hết cho 4 (ĐPCM)
Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4
Chú ý:
- Với bài toán chứng minh ta phải xét tất cả các trường hợp có thể xảy ra như bài 1 và bài 2; Với bài 3, tài liệu này chỉ nêu 1 trường hợp, còn các trường hợp khác nêu “CM tương tự”
- Bài 1 và bài 2 chú ý kết luận có sự khác nhau bởi 2 chữ "và" với chữ "hoặc" !
k mik nha
Vì n có 5 chữ số nên n có dạng abcdef ( a;b;c;d;e;f là các số có 1 chữ số )
Ta có abcdef - (a + b + c + d + e + f)
= ( 100000a + 10000b + 1000c + 100a + e + f ) - (a + b + c + d + e + f)
= ( 100000a - a ) + ( 10000b - b ) + ( 1000c - c ) + ( e - e ) + ( f - f )
= 99999a +9999b + 999c
= 9( 11111a + 1111b + 111c ) chia hết cho 9
Vậy n chia hết cho 9 ( đpcm )
Nhận xét
Một số chia 9 dư bao nhiêu thì tổng các chữ số của nó cũng dư bấy nhiêu.
Giải
Ta có:
n và tổng các chữ số của n có cùng số dư khi chia cho 9
nên hiệu của chúng chia hết cho 9(đpcm)
Do các số chia 3 chỉ có thể có các số dư là 0,1,2
Giả sử không có số nào (hoặc bộ vài số nào) có tổng chia hết cho 3
Do các số đều ko chia hết cho 3 nên chúng chia 3 chỉ có thể dư 1 hoặc 2
Theo nguyên lý Dirichlet, trong 5 số luôn có ít nhất \(\left[\dfrac{5}{2}\right]+1=3\) số có cùng số dư khi chia 3
Giả sử bộ 3 số cùng số dư khi chia 3 là \(a_1;a_2;a_3\Rightarrow a_1+a_2+a_3⋮3\) (mâu thuẫn giả thiết ko có bộ số nào chia hết cho 3)
Vậy điều giả sử là sai hay luôn có 1 hoặc vài số có tổng chia hết cho 3