Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 4x+y=1
=>y=1-4x
Thay vào A ta có:
\(A=4x^2+\left(1-4x\right)^2=4x^2+\left(1-8x+16x^2\right)=20x^2-8x+1\)
\(A=20.\left(x^2-\frac{2}{5}x+\frac{1}{20}\right)=20.\left[x^2-2.x.\frac{1}{5}+\left(\frac{1}{5}\right)^2+\frac{1}{100}\right]\)
\(A=20.\left[\left(x-\frac{1}{5}\right)^2+\frac{1}{100}\right]=20.\left(x-\frac{1}{5}\right)^2+20.\frac{1}{100}=20.\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\) Vì \(20.\left(x-\frac{1}{5}\right)^2\ge0\Rightarrow20.\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
=>GTNN của A là 1/5
Dấu "=" xảy ra <=> x=1/5
4x + y = 1 => y = 1 - 4x => 4x2 + y2 = 4x2 + (1-4x)2 = 4x2 + 1 - 8x + 16x2 = 20x2 - 8x + 1 = 20.(x2 - 4/5. x ) + 1
= \(20.\left(x^2-2.x.\frac{2}{5}+\frac{4}{25}\right)-20.\frac{4}{25}+1=20.\left(x-\frac{2}{5}\right)^2+\frac{9}{25}\ge0+\frac{9}{25}=\frac{9}{25}\)
=> min 4x2 + y2 = 9/25 khi x = 2/5
P=(4x2 -4x+1)+(y2- 2x+1)+1.
<=>P=(2x-1)^2+(x-1)^2+1.
Ta có:(2x-1)^2>=0với mọi x.
(y-1)^2>=0 với mọi y.
=>P>=1 với mọi x,y.
Dấu bằng sảy ra khi 2x-1=0 và y-1=0 <=>x=1/2 và y=1
Sorry nhá mk nhầm :
Ta có : A = 4x2 - 4x + 2017
=> A = (2x)2 - 4x + 1 + 2016
=> A = (2x - 1)2 + 2016
Mà ; (2x - 1)2 \(\ge0\forall x\)
Nên : A = (2x - 1)2 + 2016 \(\ge2016\forall x\)
Vậy Amin = 2016 , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)