Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
Bài 1:
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=1^2=1\)
\(\Rightarrow x^2+y^2+z^2\ge\dfrac{1}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Bài 3:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(4+1\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2=1^2=1\)
\(\Rightarrow4x^2+y^2\ge\dfrac{1}{5}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{5}\)
bài 1 mình thấy sao sao ý !!
đề bài là với mọi a,b,c tùy ý và chứng minh chứ bạn làm là khai thác ý cần chứng minh để chỉ ra điều kiện mà
another way bằng Bunhiacopski
Bất đẳng thức Bunhiacopski:\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Áp dụng, ta có:
\(\left(4x+y\right)^2=\left(2\cdot2x+1\cdot y\right)^2\le\left(2^2+1^2\right)\left(4x^2+y^2\right)=5\left(4x^2+y^2\right)\)
\(\Leftrightarrow4x^2+y^2\ge\frac{1}{5}\left(đpcm\right)\)
Ta có: 4 x + y = 1 => y = 1- 4x
Khi đó: \(4x^2+y^2=4x^2+\left(1-4x\right)^2=20x^2-8x+1\)
= \(20\left(x^2-\frac{2}{5}x+\frac{1}{25}\right)-\frac{20}{25}+1\)
= \(20\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
Dấu "=" xảy ra <=>x = 1/5; y = 1- 4x = 1/5
Bài 1:
a) \(\frac{4}{9}x^2-y^2=\left(\frac{2}{3}x-y\right)\left(\frac{2}{3}x+y\right)\)
b) \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
c) \(4x^2+6x+9=\left(2x+2\right)^2+5\)ko hiểu ???
d) \(\frac{1}{9}x^2-\frac{4}{3}xy+4=\left(\frac{1}{3}x\right)^2-2.\frac{1}{3}x.2+2^2=\left(\frac{1}{3}x-2\right)^2\)
Bài 2:
a) \(\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right)=\frac{1}{4}x^2-\frac{1}{9}y^2\)
b) \(\left(2x-\frac{1}{3}y\right)\left(4x^2+\frac{2}{3}xy+\frac{1}{9}x^2\right)=8x^3-\frac{1}{27}y^3\)
c) \(\left(3x-5y\right)\left(9x^2+15xy+\frac{1}{9}x^2\right)=27x^3-125y^3\)
\(4x^2+y^2=4x^2+\left(1-4x\right)^2=4x^2+1-8x+16x^2=20x^2-8x+1=20\left(x^2-\frac{2}{5}x+\frac{1}{20}\right)\)
\(=20\left[x^2-\frac{2}{5}x+\frac{1}{25}+\frac{1}{100}\right]=20\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{5}\)
BĐT$\Leftrightarrow 20x^2+5y^2\geq (4x+y)^2=16x^2+8xy+y^2\Leftrightarrow 2(x-y)^2\geq 0$ (đúng)
Dấu "=" xảy ra khi $x=y=\frac{1}{5}$