Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}y-1=0\\x+2y=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x+2.1=0\\x-z=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-3\\\left(-3\right)-z=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-3\\z=-3\end{cases}}}\)
Ta có : \(\hept{\begin{cases}y=1\\x=-3\\z=-3\end{cases}}\)
Bạn thế vào : \(x+2y+3z\)là ra thôi
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
\(\left\{{}\begin{matrix}4x+4y=7\\2y+9z=8\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
\(\Leftrightarrow4x+4y+2y+9z=15\)
\(3\left(x+2y+3z\right)+x=15\)
\(N^3=\left(5-\dfrac{x}{3}\right)^3\) không tồn tại GTLN