K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

\(D=-x^2-4x\)

\(=-\left(x^2+4x\right)\)

\(=-\left(x^2+2.x.2+2^2-4\right)\)

\(=-\left[\left(x+2\right)^2-4\right]\)

\(=-\left(x+2\right)^2+4\)

\(-\left(x+2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+2\right)^2+4\le4\forall x\)

\(\Rightarrow D\le4\forall Dx\)

Dấu ''=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Vậy \(MAX_D=4\) khi \(x=-2.\)

18 tháng 7 2017

Thank You !^^

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 12 2016

\(\hept{\begin{cases}x+y=1\\x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\end{cases}\Rightarrow A=1-xy}\)

\(x+y=1\Rightarrow\left(x+y\right)^2=1\Rightarrow\left(x-y\right)^2=1-4xy\)

\(\left(x-y\right)^2\ge0\Rightarrow xy\le\frac{1}{4}\)

GTNN A=1-1/4=3/4 khi xy=1/4 

23 tháng 12 2016

cảm ơn nhé

10 tháng 3 2017

học cái này chưa nếu muốn cách CM thì cmet

[x]+[x-2]>=[x+x-2]

[x]+[x-2]>=[2x-2]

suy ra [2x-2] đạt min khi 2x-2=0 hay x=1

3 tháng 5 2018

a + b + 2ab = 24

<=> a+b = 24 - 2ab

<=> (a +b)^2 = (24 - 2ab)^2

<=> a^2 + b^2 + 2ab = 4a^2*b^2 - 96ab + 576

<=> a^2+b^2 = 4a^2*b^2 - 98ab + 576

Q = a^2 + b^2 = 4a^2*b^2 - 98ab + 576

= 4a^2*b^2 - 2*2*a*b*24,5 + 600,25 - 24,25

= (2ab - 24,5)^2 - 24,25

có: (2ab - 24,5)^2 ≥ 0

=> (2ab - 24,5)^2 - 24,25 ≥ -24,25

vậy gtnn của Q = -24,25 = -97/4

19 tháng 10 2016

dùng bđt bunhiacopski thôi

hoặc pt \(\left(x+2y\right)^2=\left(x\cdot1+\sqrt{2}y\cdot\sqrt{2}\right)^2\)

19 tháng 3 2017

2/ x+y=2 => y=2-x

\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)

\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)

=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2

19 tháng 3 2017

1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)

Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)

Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

<=> x=1 hoặc x=1

11 tháng 7 2018

gọi biểu thức trên là A.

Ta có: \(A=x^2-2xy+2y^2-6y+9\)

\(\Rightarrow A=x^2-2xy+y^2+y^2-6y+9\)

\(\Rightarrow A=\left(x^2-2xy+y^2\right)+\left(y^2-6y+9\right)\)

 \(A=\left(x-y\right)^2+\left(y-3\right)^2\)

Nhận xét: \(\left(x+y\right)^2\ge0\forall x,y\)

                 \(\left(y-3\right)^2\ge0\forall y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2\ge0\forall x,y\)

Vậy \(minA=0\) khi \(y-3=0\Rightarrow y=3\)

                                       \(x-y=0\Rightarrow x-3=0\Rightarrow x=3\)

KL: Vậy \(minA=0\) khi \(x=3;y=3\)

11 tháng 7 2018

Đặt \(A=x^2-2xy+2y^2-6y+9=\left(x^2-2xy+y^2\right)+\left(y^2-6y+9\right)=\left(x-y\right)^2+\left(y-3\right)^2\)

Vì \(\left(x-y\right)^2\ge0;\left(y-3\right)^2\ge0\Rightarrow A=\left(x-y\right)^2+\left(y-3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-3=0\end{cases}\Leftrightarrow x=y=3}\)

Vậy Amin = 0 khi x = y = 3

5 tháng 11 2017

tim gtnn cua x^2+4x+2

GIẢI:

\(x^2+4x+2\)

\(=\left(x^2+2.x.2+2^2\right)-2\)

\(=\left(x+2\right)^2-2\)

Nhận xét : \(\left(x+2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+2\right)^2-2>0\) với mọi x

Vậy GTNN của biểu thức là -2 đạt được khi :

\(\left(x+2\right)^2=0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)