Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11.
Thay tọa độ M vào pt d ta được:
\(\frac{1}{1}=\frac{3}{3}=\frac{m}{-2}\Rightarrow m=-2.1=-2\)
12.
\(AA'\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của A'B lên (ABC)
\(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và (ABC)
\(\Rightarrow\widehat{A'BA}=60^0\)
\(AB=\frac{AC}{\sqrt{2}}=2a\Rightarrow AA'=AB.tan60^0=2a\sqrt{3}\)
8.
\(I=2\int\limits^9_0f\left(x\right)dx+3\int\limits^9_0g\left(x\right)dx=2.37+3.???=...\)
Đề thiếu, bạn tự điền số và tính
9.
\(z=\frac{1}{3-4i}=\frac{3+4i}{\left(3-4i\right)\left(3+4i\right)}=\frac{3}{25}+\frac{4}{25}i\)
\(\Rightarrow\overline{z}=\frac{3}{25}-\frac{4}{25}i\)
10.
\(\overline{z_1}=1-5i\) \(\Rightarrow\overline{z_1}+iz_2=1-5i+i\left(3-2i\right)=3-2i\)
Điểm biểu diễn là \(Q\left(3;-2\right)\)
Bài 3:
Áp dụng các hằng đẳng thức đáng nhớ ta có:
$C=a^4+b^4=(a^2+b^2)^2-2a^2b^2$
$=[(a+b)^2-2ab]^2-2(ab)^2$
$=(8^2-2.15)^2-2.15^2=706$
Bài 2:
a)
$D=-x^2+6x-11=-11-(x^2-6x)=-2-(x^2-6x+9)$
$=-2-(x-3)^2$
Vì $(x-3)^2\geq 0$ với mọi $x$ nên $D=-2-(x-3)^2\leq -2$
Vậy GTLN của $D$ là $-2$ khi $(x-3)^2=0\Leftrightarrow x=3$
b)
$F=4x-x^2+1=1-(x^2-4x)=5-(x^2-4x+4)=5-(x-2)^2$
$\leq 5-0=5$
Vậy $F_{\max}=5$. Giá trị này được khi $(x-2)^2=0\leftrightarrow x=2$
Bài này cứ giải thẳng ra thôi có vấn đề gì đâu nhỉ?
\(f'\left(x\right)=3x^2+6x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=2\\x=-2\Rightarrow y=6\end{matrix}\right.\) \(\Rightarrow A\left(-2;6\right);B\left(0;2\right)\)
Hàm trùng phương thì dễ hơn, nếu thuộc lý thuyết ta nhận xét được ngay: do hệ số a=1>0 nên cực đại của hàm xảy ra tại \(x=0\Rightarrow y=-2\Rightarrow C\left(0;-2\right)\)
\(AB=2\sqrt{5};AC=2\sqrt{17};BC=4\) \(\Rightarrow S=4+2\sqrt{5}\)
Loại đáp án A và C, nhẩm được ngay trung điểm AC có tọa độ \(\left(-1;2\right)\) thay vào D thỏa mãn \(\Rightarrow D\) đúng
Hoặc cẩn thận hơn thì mất tầm 30s để viết pt trung trực cũng được
7.
Thể tích:
\(V=\pi\int\limits^{\frac{\pi}{2}}_0sin^2xdx=\frac{\pi}{2}\int\limits^{\frac{\pi}{2}}_0\left(1-cos2x\right)dx=\frac{\pi}{2}\left(x-\frac{1}{2}sin2x\right)|^{\frac{\pi}{2}}_0=\frac{\pi^2}{4}\)
8.
\(z=\frac{z-17i}{5-i}\Leftrightarrow\left(5-i\right)z=z-17i\)
\(\Leftrightarrow z\left(i-4\right)=17i\Rightarrow z=\frac{17i}{i-4}=1-4i\)
Rốt cuộc câu này hỏi modun hay phần thực vậy ta?
Phần thực bằng 1
Môđun \(\left|z\right|=\sqrt{17}\)
9.
\(\left(1-3i\right)z=8+6i\Rightarrow z=\frac{8+6i}{1-3i}=-1+3i\)
\(\Rightarrow\left|z\right|=\sqrt{\left(-1\right)^2+3^2}=\sqrt{10}\)
10.
\(\left(1+i\right)^2\left(2-i\right)z=8+i+\left(1+2i\right)z\)
\(\Leftrightarrow2i\left(2-i\right)z-\left(1+2i\right)z=8+i\)
\(\Leftrightarrow\left(4i+2-1-2i\right)z=8+i\)
\(\Leftrightarrow z=\frac{8+i}{2i+1}=2-3i\)
Phần thực \(a=2\)
11.
Điểm biểu diễn số phức là điểm có tọa độ \(\left(-1;-2\right)\)
4.
\(I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{dx}{sin^2x}=-cotx|^{\frac{\pi}{2}}_{\frac{\pi}{4}}=1\)
5.
\(I=\int\limits^a_2\frac{2x-1}{1-x}dx=\int\limits^a_2\left(-2-\frac{1}{x-1}\right)dx=\left(-2x-ln\left|x-1\right|\right)|^a_2=-2a-ln\left|a-1\right|+4\)
\(\Rightarrow-2a+4-ln\left|a-1\right|=-4-ln3\Rightarrow a=4\)
6.
Phương trình hoành độ giao điểm:
\(x^3=x^5\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Diện tích hình phẳng:
\(S=\int\limits^0_{-1}\left(x^5-x^3\right)dx+\int\limits^1_0\left(x^3-x^5\right)dx=\frac{1}{6}\)
Bài 1:
Đặt \(\left(\frac{3}{2}\right)^x=a\) \((a>0)\)
PT tương đương với:
\(\left(\frac{9}{4}\right)^x-2.\left(\frac{3}{2}\right)^x+m^2=0\)
\(\Leftrightarrow a^2-2a+m^2=0\) (1)
-Trước tiên, để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt \(\rightarrow \) \(\Delta'=1-m^2>0\Leftrightarrow -1< m< 1\)
Áp dụng hệ thức Viete với \(a_1,a_2\) là nghiệm của (1) \(\left\{\begin{matrix} a_1+a_2=2\\ a_1a_2=m^2\end{matrix}\right.\)
-Vì \(a\) luôn dương nên \(\left\{\begin{matrix} a_1+a_2>0\\ a_1a_2>0\end{matrix}\right.\Leftrightarrow m^2>0 \Leftrightarrow m\neq 0\)
-Xét đk cuối cùng, để pt đầu tiên có hai nghiệm trái dấu, tức \(x<0\) hoặc $x>0$ thì \(a<1\) hoặc \(a>1\), hay \((a_1-1)(a_2-1)< 0\)
\(\Leftrightarrow a_1a_2-(a_1+a_2)+1< 0\Leftrightarrow m^2<1\Leftrightarrow -1< m< 1\)
Vậy \(-1< m< 1; m\neq 0\)
Bài 2:
Đặt \(2^x=a\Rightarrow \) \(4^x-2m.2^x+2m=0\) tương đương với:
\(a^2-2ma+2m=0\) (1)
Để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt
\(\Rightarrow \Delta'=m^2-2m>0\Leftrightarrow m< 0\) hoặc $m>2$
Áp dugnj hệ thức viete với $a_1,a_2$ là hai nghiệm của phương trình:
\(a_1a_2=2m\Leftrightarrow 2^{x_1}.2^{x_2}=2m\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 8=2m\rightarrow m=4\)
(thỏa mãn)
Vậy \(m=4\)
\(V_1=\pi\int\limits^9_0xdx=\frac{81\pi}{2}\)
Gọi \(M\left(a;\sqrt{a}\right)\) (\(0\le a\le9\)) và \(N\left(a;0\right)\) là hình chiếu của M trên Ox
Khi quay AOM quanh Ox sẽ tạo thành hai hình nón chung đáy với bán kính đáy \(r=MN=y_M=\sqrt{a}\); chiều cao lần lượt là \(ON=x_N=a\) và \(OM=x_M-x_N=9-a\)
\(\Rightarrow V_2=\frac{1}{3}\pi\left(\sqrt{a}\right)^2\left(a+9-a\right)=3\pi a\)
\(\Rightarrow\frac{81\pi}{2}=6\pi a\Rightarrow a=\frac{27}{4}\) \(\Rightarrow M\left(\frac{27}{4};\frac{3\sqrt{3}}{2}\right)\)
\(\Rightarrow\) diện tích phần giới hạn:
\(S=\int\limits^{\frac{27}{4}}_0\sqrt{x}dx-\frac{1}{2}.\frac{27}{4}.\frac{3\sqrt{3}}{2}=\frac{27\sqrt{3}}{4}-\frac{81\sqrt{3}}{16}=\frac{27\sqrt{3}}{16}\)
Chọn D