Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Vì \(n^2-n=n\left(n-1\right)\) luôn là số chẵn với mọi số nguyên \(n\)
nên do đó, \(a^2+b^2+c^2+d^2-\left(a+b+c+d\right)\) là số chẵn \(\left(1\right)\)
Mà \(a^2+b^2=c^2+d^2\) (theo giả thiết)
nên \(a^2+b^2+c^2+d^2=2\left(a^2+b^2\right)\) là một số chẵn \(\left(2\right)\) (do tích trên chia hết cho \(2\))
\(\left(1\right)\) và \(\left(2\right)\) suy ra \(a+b+c+d\) là một số chẵn
Vậy, \(a+b+c+d\) luôn là hợp số với \(a,b,c,d\in Z^+\)