Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b=c+d\Leftrightarrow a=c+d-b\Leftrightarrow a^2=b^2+c^2+d^2-2bc+2cd-2bd\Leftrightarrow a^2+b^2+c^2+d^2=\left(b^2-2bc+c^2\right)+\left(c^2+2cd+d^2\right)+\left(d^2-2bd+b^2\right)\Leftrightarrow a^2+b^2+c^2+d^2=\left(b-c\right)^2+\left(c+d\right)^2+\left(b-d\right)^2\)Vì a,b,c thuộc tập số nghuyên nên ta có điều phải chứng minh.
\(2\left(ab+bc+ca\right)=\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=2^2-2\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=2\Leftrightarrow ab+bc+ca=1\)
\(M=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(b+c\right)+a\left(b+c\right)\right]\)
\(=\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2=\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\)
Ta có : theo điều kiện cho trước:
a + b + c =2
<=> \(\left(a+b+c\right)^2=4\)
<=> \(a^2+b^2+c^2+2ab+2ac+2bc=4\)
<=> \(2+2\left(ab+ac+bc\right)=4\)
<=> \(2\left(ab+ac+bc\right)=2\)
<=> \(ab+ac+bc=1\)
<=> \(\left(ab+ac+bc\right)^2=1\)
<=> \(a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+a^2bc+abc^2\right)=1\)
<=> \(a^2b^2+b^2c^2+a^2c^2=1-2\left(ab^2c+a^2bc+abc^2\right)\)
Theo đề bài ta có :
M = \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)
<=> \(\left(a^2b^2+a^2+b^2+1\right)\left(c^2+1\right)\)
<=> \(a^2b^2c^2+a^2b^2+a^2c^2+a^2+b^2c^2+b^2+c^2+1\)
<=> \(a^2b^2c^2+1-2ab^2c-2a^2bc-2abc^2+3\)
<=> \(a^2b^2c^2-2ab^2c-2a^2bc-2abc^2+4\)
<=> \(abc\left(abc-2b-2a-2c\right)+4\)
<=> \(abc\left\{abc-2\left(a+b+c\right)\right\}+4\)
<=> \(abc\left(abc-4\right)+4\)
<=> \(a^2b^2c^2-4abc+4\)
<=> \(\left(abc\right)^2-4abc+4\)
<=> \(\left(abc-2\right)^2\left(đpcm\right)\)