Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c};c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;b=ck;c=dk\\ \Rightarrow a=bk=ck^2=dk^3\\ \Rightarrow\dfrac{a}{d}=k^3\\ \text{Mà }\dfrac{a}{b}=k\Rightarrow\dfrac{a^3}{b^3}=k^3\\ \Rightarrow\dfrac{a}{d}=\dfrac{a^3}{b^3}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
Ta có: \(b^2=ac=>\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd=>\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{c}{a}.\frac{c}{a}.\frac{c}{a}=\frac{a}{b}.\frac{b}{c}.\frac{c}{a}\)
=>\(\frac{a.a.a}{b.b.b}=\frac{b.b.b}{c.c.c}=\frac{c.c.c}{d.d.d}=\frac{a.b.c}{b.c.d}\)
=>\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
=>\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
=>ĐPCM
Bạn vào tham khảo nha !
Bài này giống y hệt bài bạn đó !
Câu hỏi của đỗ bùi mộng trâm - Toán lớp 7 - Học toán với OnlineMath
Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Ta có : \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}\Rightarrow\hept{\begin{cases}b.b=a.c\\c.c=b.d\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}\Rightarrow}\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}}\)
=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(1)
mà \(\frac{a^3}{b^3}=\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\)(2)
Từ (1) và (2) => đpcm
Do \(b^2=ac;c^2=bd\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c};\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}vàc^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bắng nhau
Do đó :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)1
Vì :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{c}{b}=\frac{b}{a}=\frac{c}{d}\Rightarrow\frac{c}{b}=\frac{b}{c}=\frac{a}{d}\)2
Từ 1 và 2 => Ta có điều phải chứng minh
TICK MÌNH NHA !
Câu hỏi của đỗ bùi mộng trâm - Toán lớp 7 - Học toán với OnlineMath
Tham khảo
Bạn vào tham khảo nha !
Câu hỏi của đỗ bùi mộng trâm - Toán lớp 7 - Học toán với OnlineMath
Giống y hệt bài bạn đó !