Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :A = x2 + 4y2 - 4x + 32y + 2078 = (x2 - 4x + 4) + (4y2 + 32y + 64) + 2010 = (x - 2)2 + (2y + 8)2 + 2010
Ta luôn có: (x - 2)2 \(\ge\)0 \(\forall\)x
(2y + 8)2 \(\ge\)0 \(\forall\)y
=> (x - 2)2 + (2y + 8)2 + 2010 \(\ge\)2010
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2y+8=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\2y=-8\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-4\end{cases}}\)
Vậy Min của A = 2010 tại x = 1 và y = -4
sửa đề B = 3x2 + y2 + 4x - y
Ta có B = \(3\left(x+\frac{2}{3}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{19}{12}\ge\frac{-19}{12}\)
Vậy GTNN của B là \(\frac{-19}{12}\)khi \(x=\frac{-2}{3};y=\frac{1}{2}\)
Chứng minh bổ đề : \(\frac{4x}{3-4x^2}\ge4x^2\)
\(\Leftrightarrow1+4x^3\ge3x\)
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3x\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3\sqrt[3]{\frac{4x^3}{4}}=3x\left(đpcm\right)\)
Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có :
\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)
Vậy \(P_{min}=3\)
Chúc bạn học tốt !!!
Chứng minh bổ đề: \(\frac{4x}{3-4x^2}\ge4x^2\)
\(\Leftrightarrow1+4x^3\ge3x\)
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3x\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3\sqrt[3]{\frac{4x^3}{4}=3x\left(đpcm\right)}\)
Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có
\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)
Vậy \(Pmin=3\)
Chứng minh bổ đề: \(\dfrac{4x}{3-4x^2}\ge4x^2\)
\(\Leftrightarrow1+4x^3\ge3x\)
\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{2}+4x^3\ge3x\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{2}+4x^3\ge3\sqrt[3]{\dfrac{4x^3}{4}}=3x\left(đpcm\right)\)
Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có
\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)
Vậy \(P_{min}=3\)
Áp dụng bđt 1/a + a/b >= 4/a+b với a,b > 0 và bđt côsi thì :
S >= x+y+3 . 4/4x+4y = x+y + 3/x+y = [x+y + 16/9(x+y)] + 11/9(x+y)
>= \(2\sqrt{\left(x+y\right).\frac{16}{9\left(x+y\right)}}\)+ 11/(9.4/3) = 8/3 + 11/12 = 43/12
Dấu "=" xảy ra <=> x=y=2/3
Vậy Min S = 43/12 <=> x=y=2/3
k mk nha
Câu hỏi của kudo shinichi - Toán lớp 8 - Học toán với OnlineMath
Nguyễn Linh Chi cách đó em biết rồi ạ, nhưng em muốn tìm một cách khác, dạng như tìm k sao cho \(A\ge k\left(3x+4y\right)^2\)