K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

=>4.(3x-y) = 3.(x+y)

=>12x-4y= 3x+3y

=>12x-3x=3y+4y

=>9x=7y

=>x/y = 7/9

 

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15

18 tháng 7 2019

thánh lầy :)) soi bài

18 tháng 7 2019

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow x=3k;y=4k;z=5k\)

Khi đó:\(5z^2-3x^2-2y^2=594\) trở thành:

\(5\cdot25k^2-3\cdot9k^2-2\cdot16k^2=594\)

\(125k^2-27k^2-32k^2=594\)

\(66k^2=594\)

\(k^2=9\)

\(k=\pm3\)

Bạn thay vào rồi tính

13 tháng 8 2019

\(\frac{x}{y}=a\Rightarrow x=ay\)

\(\Rightarrow\frac{x+y}{x-y}=\frac{ay+y}{ay-y}=\frac{y\left(a+1\right)}{y\left(a-1\right)}=\frac{a+1}{a-1}\)

13 tháng 8 2019

\(\frac{a}{b}=2\Rightarrow a=2b;\frac{c}{b}=3\Rightarrow c=3b\Rightarrow c-b=2b\)

\(\Rightarrow a=c-b\)

\(\Rightarrow\frac{a+c}{b+c}=\frac{c-b+b}{b+c}=\frac{b}{b+c}\)

25 tháng 10 2015

dãy số tỉ bằng nhau mà làm

25 tháng 10 2015

Câu cuối đề chưa rõ ràng , mà cho dù có rõ cùng nên sử dụng đặt bằng k  

7 tháng 1 2020

Thay \(x-y=9\)vào biểu thức A ta được:

\(A=\frac{4x-\left(x-y\right)}{3x+y}-\frac{4y+\left(x-y\right)}{3y+x}=\frac{4x-x+y}{3x+y}-\frac{4y+x-y}{3y+x}\)

   \(=\frac{3x+y}{3x+y}-\frac{3y+x}{3y+x}=1-1=0\)