Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x-5)2006 + (y2-1)2008 + (x-z)2100 = 0
Vì (3x-5)2006, (y2-1)2008 , (x-z)2100 > hoặc =0 ( với mọi x, y, z)
=>(3x-5)2006 =0 hoặc (y2-1)2008 =0 hoặc (x-z)2100 =0
=>3x-5 =0 =>y2-1 =0 =>x-z =0
=>3x =5 =>y2 =1 => x = z = 5/3
=> x =5/3 =>y=1 hoặc y=-1
Vậy (x;y;z)=(5/3; 1; 5/3) , (5/3; -1; 5/3)
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
Ta có: \(\left(3x-5\right)^{2006}\ge0\)với mọi x
\(\left(y^2-1\right)^{2008}\ge0\)với mọi y
\(\left(x-z\right)^{2100}\ge0\) với mọi x,z
\(\Rightarrow\)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)với mọi x
Mà \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Rightarrow\left(3x-5\right)^{2006}=0;\left(y^2-1\right)^{2008}=0;\left(x-y\right)^{2100}=0\)
Xét:
\(\left(3x-5\right)^{2006}=0\hept{\begin{cases}3x-5=0\\3x=5\\x=\frac{5}{3}\end{cases}}\)
Xét:
\(\left(y^2-1\right)^{2008}=0\hept{\begin{cases}y^2-1=0\\y^2=1\\y=1hoac-1\end{cases}}\)
Xét:
\(\left(x-z\right)^{2100}=0\hept{\begin{cases}x-z=0\\\frac{5}{3}-z=0\\z=\frac{5}{3}\end{cases}}\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=z=\frac{5}{3}\\y=1\end{cases}}\)
=>3x-5=0 và y2-1=0 và x-z=0
=>x=5/3 và y=-1 hoặc y=1 và z=5/3
\(\left(3x-5\right)^{2006}\ge0;\left(y^2-1\right)^{2008}\ge0;\left(x-z\right)^{2100}\ge0\) với mọi x,y,z
mà theo đề:......=0
\(\Rightarrow\left(3x-5\right)^{2006}=0\Rightarrow3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
\(y^2-1=0\Rightarrow y^2=1\Rightarrow y\in\left\{-1;1\right\}\)
\(\left(x-z\right)^{2100}=0\Rightarrow x-z=0\Rightarrow x=z\Rightarrow z=\frac{5}{3}\)
vậy...
Ta có: (3x-5)2006 lớn hơn hoặc = 0 với mọi x
(y2-1)2008 lớn hơn hoặc = 0 vs moi y
(x-z)2100 lớn hơn hoặc = 0 vs mọi x, z
=> (3x-5)2006+(y2-1)2008+(x-z)2100 lớn hơn howacj = 0 vs mọi x
mà (3x-5)2006+(y2-1)2008+(x-z)2100=0
=> (3x-5)2006=0 ; (y2-1)2008=0 và (x-z)2100=0
+) xét (3x-5)2006=0
=>3x-5=0
=>3x=5
=>x=5/3
+) xét (y2-1)2008=0
=>y2-1=0
=>y2=1
=>y=-1 hoặc y=1
+) xét (x-z)2100=0
=>x-z=0
=>5/3-z=0
=>z=5/3
Ta có:
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Vì \(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}\ge0\\\left(y^2-1\right)^{2008}\ge0\\\left(x-z\right)^{2100}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\pm1\\z=\dfrac{5}{3}\end{matrix}\right.\)
Vậy ...
Chúc bạn học tốt!
Ta thấy : VT >= 0
Dấu "=" xảy ra <=> 3x-5=0 ; y^2-1=0 ; x-z=0
<=> x=z=5/3 ; y=-1 hoặc x=z=5/3 ; y=1
Vậy .........
Tk mk nha
\(\left(3x-5\right)^{2016}\ge0\)
\(\left(y^2-1\right)^{2018}\ge0\)
\(\left(x-z\right)^{2100}\ge0\)
suy ra \(\left(3x-5\right)^{2016}+\left(y^2-1\right)^{2018}+\left(x-z\right)^{2100}\ge0\)
Dấu bằng xảy ra khi và chỉ khi
\(\hept{\begin{cases}\left(3x-5\right)^{2016}=0\\\left(y^2-1\right)^{2018}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)
\(\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\hept{\begin{cases}3x=5\\y^2=1\\x=z\end{cases}}\)
\(\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)
T I C K nha
\(\left(3x-5\right)^{2018}+\left(y^2-1\right)^{2006}+\left(x-z\right)^{2100}=0\)
ta có \(\left\{{}\begin{matrix}\left(x-z\right)^{2100}\ge0\\\left(y^2-1\right)^{2006}\ge0\\\left(3x-5\right)^{2018}\ge0\end{matrix}\right.\)
dấu = xảy ra khi \(\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\z-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\z=x\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=1\\z=\dfrac{5}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-1\\z=\dfrac{5}{3}\end{matrix}\right.\end{matrix}\right.\)
vậy.................