Cho (3x – 4y).(…) = 27 x 3   –...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Ta có

27 x 3   –   64 y 3   =   ( 3 x ) 3   –   ( 4 y ) 3     =   ( 3 x   –   4 y ) ( ( 3 x ) 2   +   3 x . 4 y   +   ( 4 y ) 2 )     =   ( 3 x   –   4 y ) ( 9 x 2   +   12 x y   +   16 )

 

Vậy đa thức cần điền là 9 x 2 + 12xy + 16

Đáp án cần chọn là: B

28 tháng 6 2017

Tính chất cơ bản của phân thức

Tính chất cơ bản của phân thức

29 tháng 10 2017

Tính chất cơ bản của phân thức

22 tháng 10 2018

a/ \(3x+3y-4x-4y=3\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(3-4\right)=-1\left(x+y\right)\)

b/ \(7x\left(x-y\right)-\left(y-x\right)=7x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(7x+1\right)\)

c/ \(5x\left(1-x\right)+\left(x-1\right)=5x\left(1-x\right)-\left(1-x\right)=\left(1-x\right)\left(5x-1\right)\)

d/ \(4x\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left(4x+3x-3y\right)=\left(x-y\right)\left(7x-3y\right)\)

e/ \(4x\left(x-y\right)+3\left(y-x\right)^2=4x\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left(4x+3x-3y\right)=\left(x-y\right)\left(7x-3y\right)\)

g/ \(x^2+8x+7=x^2+x+7x+7=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

h/ \(x^2-6x-16=x^2+2x-8x-16=x\left(x+2\right)-8\left(x+2\right)=\left(x+2\right)\left(x-8\right)\)

i/ \(4x^2-8x+3=4x^2-2x-6x+3=2x\left(2x-1\right)-3\left(2x-1\right)=\left(2x-1\right)\left(2x-3\right)\)

k/ \(3x^2-11x+6=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)

27 tháng 6 2018

Cảm ơn ạ

6 tháng 3 2020

\(x^2+4x-y^2+4\\ =\left(x^2+4x+4\right)-y^2\\ =\left(x+2\right)^2-y^2\\ =\left(x+2-y\right)\cdot\left(x+2+y\right)\)

\(2xy-x^2-y^2+16\\ =\left(x^2-2xy+y^2\right)-16\\ =\left(x-y\right)^2-16\\ =\left(x-y+4\right)\cdot\left(x-y-4\right)\)

\(x^2-2x-4y^2-4y\\ =\left(x^2-4y^2\right)-\left(2x+4y\right)\\ =\left(x-2y\right)\cdot\left(x+2y\right)-2\left(x+2y\right)\\ =\left(x+2y\right)\cdot\left(x-2y+2\right)\)

\(x^2+6x+9-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\cdot\left(x-3+y\right)\)

\(3x^2+6xy+3y^2-3z^2\\ =3\cdot\left(x^2+2xy+y^2-z^2\right)\\ =3\cdot\left[\left(x^2+2xy+y^2\right)-y^2\right]\\ =3\cdot\left[\left(x-y\right)^2-z^2\right]\\ =3\cdot\left(x-y-z\right)\cdot\left(x-y+z\right)\)

\(9x-x^3\\ =x\cdot\left(9-x^2\right)\\ =x\cdot\left(3-x\right)\cdot\left(3+x\right)\)

\(\left(2xy+1\right)^2-\left(2x+y\right)^2\\ =\left(2xy+1-2x-y\right)\cdot\left(2xy+1+2x-y\right)\)

30 tháng 9 2020

1. x2 - 16 - 4xy + 4y2

= ( x2 - 4xy + 4y2 ) - 16

= ( x - 2y )2 - 42

= ( x - 2y - 4 )( x - 2y + 4 )

2. 4x2 + 4x - 3

= ( 4x2 + 4x + 1 ) - 4

= ( 2x + 1 )2 - 2

= ( 2x + 1 - 2 )( 2x + 1 + 2 )

= ( 2x - 1 )( 2x + 3 )

3. x2 - x - 12

= x2 + 3x - 4x - 12

= x( x + 3 ) - 4( x + 3 )

= ( x + 3 )( x - 4 )

4. 3x + 3y - x2 - 2xy - y2

= ( 3x + 3y ) - ( x2 + 2xy + y2 )

= 3( x + y ) - ( x + y )2

= ( x + y )( 3 - x - y )

5. 4y4 + 16 

= 4( y4 + 4 )

= 4( y4 + 4y2 + 4 - 4y2 )

= 4[ ( y4 + 4y2 + 4 ) - 4y2 ]

= 4[ ( y2 + 2 )2 - ( 2y )2 ]

= 4( y2 - 2y + 2 )( y2 + 2y + 2 )

30 tháng 9 2020

a,\(x^2-16-4xy+4y^2\)

\(=\left(x^2-4xy+4y^2\right)-16\)

\(=\left(x-2y\right)^2-4^2\)

\(=\left(x-2y-4\right)\left(x-2y+4\right)\)

b,\(4x^2+4x-3\)

\(=4x^2-2x+6x-3\)

\(=\left(4x^2-2x\right)+\left(6x-3\right)\)

\(=2x\left(2x-1\right)+3\left(2x-1\right)\)

\(=\left(2x+3\right)\left(2x-1\right)\)

c,\(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=\left(x^2+3x\right)-\left(4x-12\right)\)

\(=x\left(x+3\right)-4\left(x+3\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

16 tháng 7 2018

a)   \(x^3-2x^2-6x+12\)

\(=x^2\left(x-2\right)-6\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-6\right)\)

\(=\left(x-2\right)\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)

b)  \(x^4-7x^2+12\)

\(=x^4-3x^2-4x^2+12\)

\(=x^2\left(x^2-3\right)-4\left(x^2-3\right)\)

\(=\left(x^2-3\right)\left(x^2-4\right)\)

\(=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-2\right)\left(x+2\right)\)

c)  \(x^2-5x+4\)

\(=x^2-x-4x+4\)

\(=x\left(x-1\right)-4\left(x-1\right)\)

\(=\left(x-1\right)\left(x-4\right)\)

d)  \(3x^2+5x+2\)

\(=3x^2+3x+2x+2\)

\(=3x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(3x+2\right)\)

e)  \(x^3-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2 -1\right]\)

\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)

2 tháng 7 2017

a) \(25.\left(x-1\right)^2-16\left(x+y\right)^2\)

= \(\left(5x-5\right)^2-\left(4x+y\right)^2\)

= \(\left(5x-5-4x-y\right)\left(5x-5+4x+y\right)\)

= \(\left(x-y-5\right)\left(9x+y-5\right)\)

b) \(x^3+3x^2+3x+1-27z^3\)

= \(\left(x+1\right)^3-27z^3\)

= \(\left(x+1-3z\right)\left(x^2+x.3z+9z^2\right)\)

c) \(x^2-2xy+y^2-xz+yz\)

= \(\left(x-y\right)^2-z\left(x-y\right)\)

= \(\left(x-y\right)\left(x-y-z\right)\)

d) \(a^3x-ab+b-x\)

= \(x\left(a^3-1\right)-b\left(a-1\right)\)

= \(x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)

= \(\left(a-1\right)\left(a^2x+ax+x-b\right)\)

f) \(x^2+2x-4y^2-4y\)

= \(x^2+2x+1-\left(4y^2+4y+1\right)\)

= \(\left(x+1\right)^2-\left(2y+1\right)^2\)

= \(\left(x+1-2y-1\right)\left(x+1+2y+1\right)\)

= \(\left(x-2y\right)\left(x+2y+2\right)\)

g) \(xy-4+2x-2y\)

= \(y\left(x-2\right)-2\left(x-2\right)\)

= \(\left(x-2\right)\left(y-2\right)\)

a: \(=\left(5x-5\right)^2-\left(4x-4y\right)^2\)

\(=\left(5x-5-4x+4y\right)\cdot\left(5x-5+4x-4y\right)\)

\(=\left(x+4y-5\right)\left(9x-4y-5\right)\)

b: \(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

c: \(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

d: \(=x\left(a^3-1\right)-b\left(a-1\right)\)

\(=x\left(a-1\right)\cdot\left(a^2+a+1\right)-b\left(a-1\right)\)

\(=\left(a-1\right)\left(a^2x+ax+1-b\right)\)