K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 8 2024

Lời giải:

$3x-4y=0\Rightarrow 3x=4y\Rightarrow \frac{x}{4}=\frac{y}{3}$

Đặt $\frac{x}{4}=\frac{y}{3}=a$

$\Rightarrow x=4a; y=3a$

$\Rightarrow x^2+y^2=(4a)^2+(3a)^2=25a^2\geq 0$ với mọi $a\in\mathbb{R}$

$\Rightarrow x^2+y^2$ nhận giá trị nhỏ nhất bằng $0$

Giá trị này đạt tại $a=0\Leftrightarrow x=y=0$

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

13 tháng 3 2016

câu 2a) xét (x-1)2> hoặc = 0

(x-1)2+(y+1)2> hoặc bằng 0

(x-1)2+(y+1)2+3> hoặc =3

=> GTNN của biểu thức trên là 3

13 tháng 3 2016

GIÚP minh vs mai mình nộp rui!!!!!!!!!!!!!!!!!!!!@@@@@@@@@@

12 tháng 3 2017

Vì \(\left(x+2\right)^2\ge0\forall x;\left|y-\frac{1}{5}\right|\ge0\forall y\)

\(\Rightarrow\left(x+2\right)^2+\left|y-\frac{1}{5}\right|\ge0\forall x;y\)

\(\Rightarrow A=\left(x+2\right)^2+\left|y-\frac{1}{5}\right|-10\ge-10\forall x;y\)

Dấu "=" xảy ra <=> \(\left(x+2\right)^2=0;\left|y-\frac{1}{5}\right|=0\)

\(\Rightarrow x=-2;y=\frac{1}{5}\)

Vậy \(A_{min}=-10\) tại \(x=-2;y=\frac{1}{5}\)

26 tháng 5 2020

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

30 tháng 4 2018

ta có x4+3x2 \(\ge\)0

=>\(x^4+3x^2+3\ge3\)

vậy giá trị nhỏ nhất của biểu thức =3

30 tháng 4 2018

\(P\left(x\right)=x^4+3x^2+3=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\)

nhận thấy \(x^2+\frac{3}{4}\ge\frac{3}{4}\) suy ra \(\left(x^2+\frac{3}{2}\right)^2\ge\frac{9}{4}\)

Suy ra \(P\left(x\right)\ge\frac{9}{4}+\frac{3}{4}=\frac{12}{4}=3\)

Vậy Min = 3 <=> x = 0 

15 tháng 3 2017

Ta có:P=(/x-3/+2)^2+(y+3)+2017

Ta thấy:/x-3/\(\ge\)0

   \(\Rightarrow\)/x-3/+2\(\ge\)2

  \(\Rightarrow\)(/x-3 +2)\(^2\)\(\ge\)4

       y\(\ge\)0

  \(\Rightarrow\)y+3\(\ge\)3

Do đó (/x-3/+2)\(^2\)\(\ge\)4+3+2017

                            =2024

Vậy giá trị nhỏ nhất của P là 2024\(\Leftrightarrow\)+, /x-3/=0

                                                          \(\Rightarrow\)x-3=0

                                                                 x    =0+3

                                                                  x   =3

                                                           +, y+3=0

                                                              y    =0-3

                                                            y      =-3

20 tháng 9 2019

1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath