\(3a^2+3b^2=10ab\)  và \(b>a>0\) 

tìm giá tr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

từ \(3a^2+3b^2=10ab\)

\(\Rightarrow3a^2-9ab-ab+3b^2=0\)

\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Rightarrow\left(a-3b\right)\left(3a-b\right)=0\)

truường hợp a-3b=0 tức a=3b ( ko thỏa mãn đk 0<a<b<3ab)

Vậy 3a-b=0 tức là b=3a. thay vào P ta có:

\(\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)  ( vì a khác 0)

23 tháng 5 2018

Để sử dụng đc \(a^2+b^2=\frac{10ab}{3}\) cần có \(P^2=\left(\frac{a-b}{a+b}\right)^2\)

Từ đó ta có lời giải bài toán làm tiếp đi nhé

23 tháng 5 2018

Ta có :

3a2 + 3b2 = 10ab

<=> 3a2 + 3b2 - 10ab = 0

<=>4a- a2 + 4b2  - b- 8ab- 2ab = 0

<=> ( 4a2 - 8ab + 4b2 ) - ( a2 + 2ab + b2 ) = 0

<=> ( 2a + 2b )2 - ( a - b )2 = 0

<=> ( 2a + 2b )2 = ( a - b )2

<=> 2a + 2b = a - b  ( 1 )

Thay (1) vào P ta được :

\(P=\frac{2a+2b}{a+b}\)

\(P=\frac{2\left(a+b\right)}{a+b}\)

\(P=2\)

23 tháng 5 2018

Mạo danh cũng ko xong , chúa pain ko bao giờ nói " giúp pain đi "  hay đúng hơn là t ko cần con người giải giúp mấy bài toán easy ntn này

Y
4 tháng 6 2019

gt \(\Rightarrow3a^2-10ab+3b^2=0\)

\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Rightarrow a-3b=0\) ( do \(3a-b>0\forall a>b>0\))

\(\Rightarrow a=3b\)

khi đó \(P=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)

28 tháng 2 2016

từ 3a2+3b2=10ab\(\Rightarrow\)P^2=\(\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\)\(\Rightarrow\)P^2=1/4

mặt khác b>a>0\(\Rightarrow\)P<0\(\Rightarrow\)P=-1/2

9 tháng 8 2017

Vì \(b>a>0\Rightarrow P=\frac{a-b}{a+b}< 0\)

Ta có : \(P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4}{16}\)

\(\Rightarrow\orbr{\begin{cases}P=-\frac{1}{2}\\P=\frac{1}{2}\end{cases}}\) Mà P < 0 nên \(P=-\frac{1}{2}\)

Vậy \(P=\frac{a-b}{a+b}=-\frac{1}{2}\)

7 tháng 5 2019

Sao cách em làm ra kết quả khác ah Hùng ạ:Câu hỏi của Phan Thị Hồng Nhung - Toán lớp 9 

6 tháng 11 2016

Th1: P=0

TH2: P=-1

13 tháng 3 2020

9) bài này nhiều cách thay lắm. chả biết cách nào nhanh hơn. 

ĐK : ...

\(N=\frac{a+x+1}{a+x}:\frac{a^2+ax-a}{a+x}.\left[\frac{2ax-1+\left(a^2+x^2\right)}{2ax}\right]\)

\(N=\frac{a+x+1}{a+x}.\frac{a+x}{a\left(a+x-1\right)}.\frac{\left(a+x\right)^2-1}{2ax}\)

\(N=\frac{a+x+1}{a\left(a+x-1\right)}.\frac{\left(a+x-1\right)\left(a+x+1\right)}{2ax}\)

\(N=\frac{\left(a+x+1\right)^2}{2a^2x}=\frac{\left(a+1+\frac{1}{a-1}\right)^2}{\frac{2a^2}{a-1}}\)

\(N=\frac{\left(\frac{\left(a+1\right)\left(a-1\right)+1}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\left(\frac{a^2}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\frac{a^4}{\left(a-1\right)^2}}{\frac{2a^2}{a-1}}=\frac{a^2}{2\left(a-1\right)}\)

10) \(3a^2+3b^2=10ab\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)

\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3a=b\\a=3b\left(loai-vi-b>a>0\right)\end{cases}}\)

Thay 3a = b vào biểu thức, ta có :

\(P=\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)

9 tháng 4 2017

Xét:

\(P^2=\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{10ab-6ab}{10ab+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\)\(P>0\Rightarrow P=\dfrac{1}{2}\)

9 tháng 4 2017

Sửa đề là: a>b>0 nha

\(3a^2+3b^2=10ab\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow3a^2-9ab-ab+3b^2=0\)

\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

=>b=3a hoặc a=3b

TH1: b=3a

\(P=\dfrac{b-a}{b+a}=\dfrac{3a-a}{3a+a}=\dfrac{2a}{4a}=\dfrac{1}{2}\)

TH2: a=3b

\(P=\dfrac{b-3b}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)