Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\Rightarrow\frac{a+b+c}{b+c+c+a+a+b}\Rightarrow\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
vậy giá trị của mỗi tỉ số đó là \(\frac{1}{2}\)
nhớ **** cho tui nha
\(\frac{1a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
Không xác định vì không thể chia cho 0
Nếu a+b+c khác 0 thì theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}\) = \(\frac{b}{c+a}\) = \(\frac{c}{a+b}\) = \(\frac{a+b+c}{2\left(a+b+c\right)}\) = \(\frac{1}{2}\)
Neeua a+b+c = 0 thì b+c= -a, c+a= -b, a+b= -c nên mỗi tỉ số \(\frac{a}{b+c}\) , \(\frac{b}{c+a}\) , \(\frac{c}{a+b}\) bằng -1
Từ \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{b+c}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Tương tự \(\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
Vậy \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
\(\Rightarrow2a=b+c\)
\(\Rightarrow2b=c+a\)
\(\Rightarrow2c=a+b\)
ta có hpt:
\(\hept{\begin{cases}2a=b+c\\2b=c+a\\2c=a+b\end{cases}\hept{\begin{cases}b=2a-c\\2b=c+a\\2c=a+b\end{cases}}}\)
thế b ta đc
\(\hept{\begin{cases}4a-2c=c+a\\2c=a+2a-c\end{cases}\hept{\begin{cases}3a-3c=0\\3c=3a=0\end{cases}\Rightarrow}}a=c\)
\(b=2a-c=a\)
\(\Rightarrow a=b=c\)vậy pt vô số nghiệm
\(1,\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)
\(b,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)
\(3,\)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Rightarrow\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(4,\) https://hoc24.vn/hoi-dap/question/157445.html
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Leftrightarrow a=\frac{1}{2}\left(b+c\right);b=\frac{1}{2}\left(c+a\right);c=\frac{1}{2}\left(a+b\right)\)
\(\Leftrightarrow a+b=c+\frac{1}{2}b+\frac{1}{2}a\Leftrightarrow\frac{1}{2}a+\frac{1}{2}b=c\left(1\right)\)
\(b+c=a+\frac{1}{2}c+\frac{1}{2}b\Leftrightarrow\frac{1}{2}b+\frac{1}{2}c=a\left(2\right)\)
\(c+a=b+\frac{1}{2}a+\frac{1}{2}c\Leftrightarrow\frac{1}{2}a+\frac{1}{2}c=b\left(3\right)\)
Từ (1);(2) và (3)
=> a=b=c (đpcm)
Vì a/b+c=b/c+a=c/a+b nên a/b+c+b/c+a+c/a+b= a-b+c/ b+c-c-a+a-b = a-b+c/2b hoặc = 3a/b+c=3b/c+a=3c/a+b
Xét \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow P=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=-1+\left(-1\right)+\left(-1\right)=-3\)
Xét \(a+b+c\ne0\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{1\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy 3 tỉ số đó bằng \(\frac{1}{2}\)