Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Leftrightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1. Nếu a + b + c = 0 thì : \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2. Nếu \(a+b+c\ne0\) thì a = b = c
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a^3}=8\)
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
\(\Rightarrow\dfrac{a}{b+c}+1=\dfrac{b}{a+c}+1=\dfrac{c}{a+b}+1\)
\(\Rightarrow\dfrac{a+b+c}{b+c}=\dfrac{a+b+c}{a+c}=\dfrac{a+b+c}{a+b}\)
\(\Rightarrow b+c=a+c=b+a\)
\(\Rightarrow a=b=c\)
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a}{a+a}=\dfrac{1}{2}\)
Tính chất tỉ số:
Cho x, y, z > 0; x/y < 1 ta có: x / y < (x+z) / (y+z) (*)
cm:
(*) <=> x(y+z) < y(x+z) <=> xy+xz < yx+yz <=> xz < yz <=> x < y đúng do gt x < y
- - - - -
với các số a, b, c ta có: a < a+b ; b < b+c ; c < c+a
=> a/(a+b) < 1 ; b/(b+c) < 1 ; c/(c+a) < 1; ad (*) ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) < (a+c)/(a+b+c) + (b+a)/(b+c+a) + (c+b)/(c+a+b)
=> A < 2(a+b+c)/(a+b+c) = 2
mặt khác ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(b+c+a) + c/(c+a+b)
=> A > (a+b+c)/(a+b+c) = 1
Tóm lại ta có: 1 < A < 2 => A không là số tự nhiên
Ta có:
a+b-c/c = b+c-a/a = c+a-b/b
=>a+b-c/c + 2 = b+c-a/a +2 = c+a-b/b +2
=>a+b-c/c + 2c/c =b+c-a/a +2a/a = c+a-b/b +2/b
=>a+b+c/c = a+b+c/a =a+b+c/b
* Nếu a+b+c=0 thì a= 0-b-c= -(b+c)
b= 0-a-c= -(a+c)
c= 0-b-a= -(b+a)
Thay a= -(b+c) ; b=-(a+c);c=-(b+a) vào B ta được
B=(1+b/a)(1+a/c)(1+c/b)=(a/a + b/a )(c/c +a/c)(b/b+c/b)=(a+b)/a * (a+c)/c * (c+b)/b
=(-c)/a * (-b)/c * (-a)/b =-1
* Nếu a+b+c\(\ne\)0 thì a=b=c
Khi đó
B=(1+b/a)(1+a/c)(1+c/b)=(1+1)(1+1)(1+1)=2*2*2=8
Vậy B=-1 hoặc B=8
nhớ k nha bạn
1) a) Để x > 0
=> \(2a-5< 0\)
\(\Rightarrow2a< 5\)
\(\Rightarrow a< 2,5\)
\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)
b) Để x < 0
\(\Rightarrow2a-5>0\)
\(\Rightarrow2a>5\)
\(\Rightarrow a>2,5\)
\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)
c) Để x = 0
\(\Rightarrow2a-5=0\)
\(\Rightarrow2a=5\)
\(\Rightarrow a=2,5\)
\(\text{Vậy }x=0\Leftrightarrow a=2,5\)
2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)
\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)
\(\Rightarrow3a-5\in B\left(4\right)\)
\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)
\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)
\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)
\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có:
M=1/a^2+1/b^2+1/c^2 = (a^2b^2 + b^2c^2 + c^2a^2)/a^2b^2c^2
Bình phương 2 vế a+b+c=0
=> a^2+b^2+c^2 = -2(ab+bc+ca)
=> (a^2 +b^2 +c^2)^2 =4 [a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c)]
=> (a^2 +b^2 +c^2)^2/4 = a^2b^2 + b^2c^2 + c^2a^2
=> M = [(a^2 +b^2 +c^2)/2abc]^2
Vì a,b,c là các số hữu tỷ
=> M là bình phương của số hữu tỷ
\(M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\)
\(=\frac{\left(ab+bc+ca\right)^2-2b^2ac-2c^2ab-2a^2bc}{a^2b^2c^2}\)
\(=\frac{\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)}{a^2b^2c^2}\)
\(=\frac{\left(ab+bc+ca\right)^2}{a^2b^2c^2}=\left(\frac{ab+bc+ca}{abc}\right)^2\) là bình phương 1 số hửu tỉ.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+c+a}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{1}{2}\)