\(x+y+z=3\) tìm min của P\(=xy+yz+zx+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

\(P=xy+yz+zx+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(P\ge xy+yz+zx+\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{zx}}+\frac{9}{x+y+z}\)

\(P\ge xy+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xy}}+yz+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{yz}}+zx+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{zx}}+3\)

\(P\ge3\sqrt[3]{\frac{xy}{xy}}+3\sqrt[3]{\frac{yz}{yz}}+3\sqrt[3]{\frac{zx}{zx}}+3=12\)

\(P_{min}=12\) khi \(x=y=z=1\)

31 tháng 5 2020

thực dương. Xin lỗi :(

NV
31 tháng 5 2020

\(yz\le\frac{1}{2}\left(y^2+z^2\right)=\frac{1}{2}\left(3-x^2\right)\)

\(\Rightarrow3-yz\ge3-\frac{1}{2}\left(3-x^2\right)=\frac{3}{2}+\frac{1}{2}x^2\)

\(\Rightarrow\frac{x}{3-yz}\le\frac{x}{\frac{3}{2}+\frac{1}{2}x^2}=\frac{2x}{x^2+3}\)

Làm tương tự và cộng lại ta có: \(VT\le2\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)

Ta sẽ chứng minh: với mọi \(0< x^2< 3\) ta luôn có: \(\frac{x}{x^2+3}\le\frac{x^2+3}{16}\)

Thật vậy, BĐT tương đương:

\(16x\le\left(x^2+3\right)^2\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+9\right)\ge0\) (luôn đúng)

Tương tự: \(\frac{y}{y^2+3}\le\frac{y^2+3}{16}\) ; \(\frac{z}{z^2+3}\le\frac{z^2+3}{16}\)

Cộng vế với vế:

\(VT\le2.\frac{x^2+y^2+z^2+9}{16}=\frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

18 tháng 8 2020

Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)

Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)

Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)

Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1

Vậy minP=\(\frac{3}{2}\)khi x=y=z=1

NV
15 tháng 2 2020

\(VT=\sum\frac{x}{3-yz}\le\sum\frac{2x}{6-\left(y^2+z^2\right)}=\sum\frac{2x}{x^2+x^2+y^2+z^2}\le\sum\frac{x^2+1}{x^2+1+2}\)

\(VT\le\frac{1}{4}\sum\left(\frac{x^2+1}{x^2+1}+\frac{x^2+1}{2}\right)=\frac{1}{4}\left(3+\frac{x^2+y^2+z^2+3}{2}\right)=\frac{3}{2}\)

NV
27 tháng 6 2020

\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)

\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)

\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)

6 tháng 10 2019

Em chưa thử nhưng chắc quy đồng full đi ak?

15 tháng 4 2016

Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)

Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)

Và \(z+xy=\left(x+1\right)\left(y+1\right)\)

Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

            \(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)

                                                       \(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)

Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)

NV
4 tháng 10 2019

\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\) \(\Rightarrow x=y=z\)

\(A=\left(2015-2014\right)\left(2014-2013\right)\left(2013-2012\right)=1\)

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả