Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x+y)xy=x2+y2-xy
=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)
<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)
<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)
mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)
Vậy Max A =16 khi \(x=y=\frac{1}{2}\)
Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)
Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)
Theo đề bài có
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)
Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)
\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)
\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)
\(\Leftrightarrow-0,5\le2013-A\le0,5\)
\(\Leftrightarrow2012,5\le A\le2013,5\)
Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)
Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
\(x^3+y^3+xy=\left(x+y\right)^3-3xy\left(x+y\right)+xy=1-2xy\) (vì x+y=1)
Ta có \(P\) đạt giá trị lớn nhất khi \(1-2xy\) đạt giá trị nhỏ nhất \(\Leftrightarrow xy\) đạt giá trị lớn nhất
Mà x+y = 1 (tức tổng x,y không đổi) nên xy dạt giá trị lớn nhất khi x = y và x+y = 1 => x = y = 1/2 thay vào P được
\(MaxP=\frac{1}{\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^3+\frac{1}{2}.\frac{1}{2}}=2\)