Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x,y,z là các số nguyên dương
nên áp dụng bất đẳng thức Cauchy ta có :
\(x+y\ge2\sqrt{xy}\)(1)
\(y+z\ge2\sqrt{yz}\)(2)
\(z+x\ge2\sqrt{zx}\)(3)
Nhân (1), (2) và (3) theo vế ta có :
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}=8\sqrt{xy\cdot yz\cdot zx}=8\sqrt{x^2y^2z^2}=8\left|xyz\right|=8xyz\)
( do x,y,z là các số nguyên dương )
Đẳng thức xảy ra <=> x = y = z
=> đpcm
áp dụng BĐT AM-GM
ta có \(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{zx}\)
=>\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z\left(ĐPCM\right)}\)
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số