K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

Giả sử a≤b≤c⇒ab+bc+ca≤3bc Theo giả thiết abc<ab+bc+ca (1) nên abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

20 tháng 8 2016

20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10 
<=> 2/3 < 1/a + 1/b + 1/c < 7/10 
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có 
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau : 
a) A = 2 
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại) 
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41} 
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13 
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại) 
b) A = 3 
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7 
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại) 
c) A >= 5 
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại) 
Tóm lại có các TH sau 
@ A = 2, B = 7, C = 19 
@ A = 2, B = 7, C = 23 
@ A = 2, B = 7, C = 29 
@ A = 2, B = 7, C = 31 
@ A = 2, B = 7, C = 37 
@ A = 2, B = 7, C = 41 
@ A = 2, B = 11, C = 13 
@ A = 3, B = 5, C = 7 
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có 
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2) 
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn ĐK bài toán.

5 tháng 4 2017

20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10
<=> 2/3 < 1/a + 1/b + 1/c < 7/10
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau :
a) A = 2
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại)
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41}
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại)
b) A = 3
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại)
c) A >= 5
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại)
Tóm lại có các TH sau
@ A = 2, B = 7, C = 19
@ A = 2, B = 7, C = 23
@ A = 2, B = 7, C = 29
@ A = 2, B = 7, C = 31
@ A = 2, B = 7, C = 37
@ A = 2, B = 7, C = 41
@ A = 2, B = 11, C = 13
@ A = 3, B = 5, C = 7
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2)
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn ĐK bài toán.

26 tháng 11 2021

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

AH
Akai Haruma
Giáo viên
31 tháng 10 2021

Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành

Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

CMR: $xyz=1$

-----------------------------

Có:

$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$

\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)

\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)

Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$

$\Rightarrow 1=\frac{1}{x^2y^2z^2}$

$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)

Ta có đpcm.

 

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$

$=(ad+bc)t$

Mà: 

$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$

Tương tự: $t> ac+bd$

Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:

$ab+cd> ad+bc, ac+bd> ad+bc$

Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý 

Do đó ta có đpcm.

 

7 tháng 12 2016

20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10 
<=> 2/3 < 1/a + 1/b + 1/c < 7/10 
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có 
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau : 
a) A = 2 
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại) 
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41} 
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13 
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại) 
b) A = 3 
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7 
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại) 
c) A >= 5 
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại) 
Tóm lại có các TH sau 
 A = 2, B = 7, C = 19 
 A = 2, B = 7, C = 23 
 A = 2, B = 7, C = 29 
 A = 2, B = 7, C = 31 
 A = 2, B = 7, C = 37 
 A = 2, B = 7, C = 41 
 A = 2, B = 11, C = 13 

 A = 3, B = 5, C = 7 
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có 
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2) 
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn điều kiện đầu bài . 

6 tháng 12 2016

Ta có

\(20abc< 30\left(ab+bc+ca\right)< 21abc\)

\(\Leftrightarrow\frac{2}{3}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{7}{10}\)

Không mất tính tổng quát ta giả sử \(a< b< c\)

\(\Rightarrow\frac{2}{3}< \frac{3}{a}\Rightarrow a=\left(2,3\right)\)(vì a nguyên tố)

Thế lần lược các giá trị a vào rồi làm tương tự như bước trên sẽ tìm được b, c (nhớ loại giá trị không đúng nhé)

Vai trò a, b, c là như nhau nên các giá trị a, b, c có thể đổi vị trí cho nhau nên chú ý để không bỏ xót nghiệm nhé

24 tháng 10 2019

Đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\left(x;y;z>0\right)\). Thay vào và quy đồng từng đẳng thức ta được

xy2+y=xyz+x

yz2+z=xyz+y

x2z+x=xyz+z

cộng 3 đẳng thức trên ta được 3xyz = xy2+yz2+zx2 \(\ge3\sqrt[3]{xy^2.yz^2.zx^2}=3xyz\)

dấu '=' khi \(xy^2=yz^2=zx^2< =>x=y=z\) hay a=b=c

Vậy không nhất thiết abc=1   

27 tháng 11 2018

Sửa:

Cho các số nguyên dương a ; b ; c đôi một khác nhau thỏa mãn a2 + b2 = c2 .CMR: ab chia hết cho  a + b + c 

27 tháng 11 2018

\(gt\Leftrightarrow a^2+b^2+2ab=c^2+2ab\Leftrightarrow\left(a+b\right)^2-c^2=2ab\)

\(\Leftrightarrow\left(a+b+c\right)\left(a+b-c\right)=2ab\)

\(\Leftrightarrow\frac{ab}{a+b+c}=\frac{a+b-c}{2}\)

Neu can chung minh \(ab⋮a+b+c\) thi can cm \(a+b-c\) chan ma ta ci a+b+c va a+b-c cung tinh chan le va \(a^2;b^2;c^2\equiv0;1;2\left(mod4\right)\)

*)c du 0 => a;b du 0 => a+b+c chia het 4 hay a+b+c chan hay a+b-c chan -> QED

*)c du 1 => a du 0;b du 1 =>a+b+c chan hay a+b-c chan ->QED

*)c du 2: +) a;b du 1 => a+b+c du 4  hay a+b+c du 0 => a+b+c chan hay a+b-c chan ->QED

+)a du 0;b du 2 =>a+b+c chia het  => a+b+c chan =>a+b-c chan ->QED