\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

Bổ đề:\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\Leftrightarrow\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

Ta có:\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}.\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\)

Tương tự ta có:\(\dfrac{1}{2y+z+x}\le\dfrac{1}{4}.\dfrac{1}{4}\left(\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)\)

                         \(\dfrac{1}{2z+x+y}\le\dfrac{1}{4}.\dfrac{1}{4}\left(\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}\right)\)

Cộng vế với vế ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{2y+z+x}+\dfrac{1}{2z+x+y}\le\dfrac{1}{16}\left[4\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}.4.4=1\)

Dấu "=" xảy ra ⇔ \(x=y=z=\dfrac{3}{4}\)

5 tháng 12 2018

Sửa đề nhé\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(z+x\right)+\left(z+y\right)+\left(x+y\right)+\left(x+y\right)}\)

\(\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}\right)\)

CMTT và cộng theo vế:

\(VT\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)

\(=\dfrac{1}{16}.24=\dfrac{3}{2}\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

NV
26 tháng 2 2019

\(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=2\)

Lại có \(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)

Tương tự \(\dfrac{1}{x+2y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

Cộng vế với vế: \(P\le\dfrac{1}{2}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{1}{2}.2=1\)

\(\Rightarrow P_{max}=1\) khi \(x=y=z=\dfrac{3}{4}\)

AH
Akai Haruma
Giáo viên
20 tháng 10 2018

Bạn xem tại đây :

Câu hỏi của Dương Thị Thu Ngọc - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
17 tháng 9 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)

\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)

\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)

Cộng theo vế:

\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

10 tháng 11 2017

Ta có :

\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(2x+y+z\right)+\left(2y+x+z\right)}\)(1)

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\left(1\right)\le\dfrac{1}{4}\left(\dfrac{1}{x+y+x+z}+\dfrac{1}{y+x+y+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\right)\)

\(=\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

tương tự với hai ông còn lại sau đó cộng lại ta được:

\(\Sigma\dfrac{1}{3x+3y+2z}\le\dfrac{24}{16}=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 1:

\((x,y,z)=(\frac{2a^2}{bc}; \frac{2b^2}{ca}; \frac{2c^2}{ab})\) (\(a,b,c>0\) )

Khi đó:

\(\text{VT}=\frac{\frac{4a^4}{b^2c^2}}{\frac{4a^4}{b^2c^2}+\frac{4a^2}{bc}+1}+\frac{\frac{4b^4}{c^2a^2}}{\frac{4b^4}{c^2a^2}+\frac{4b^2}{ca}+4}+\frac{\frac{4c^4}{a^2b^2}}{\frac{4c^4}{a^2b^2}+\frac{4c^2}{ab}+4}\)

\(=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)

\(\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+a^2bc+b^2ac+c^2ab+(a^2b^2+b^2c^2+c^2a^2)}\)

(Áp dụng BĐT Cauchy_Schwarz)

Theo BĐT Cauchy dễ thấy:

\(a^2b^2+b^2c^2+c^2a^2\geq a^2bc+b^2ca+c^2ab\)

\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)}=\frac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=2$

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 2:

Đặt \((x,y,z)=\left(\frac{a}{b};\frac{b}{c}; \frac{c}{a}\right)\)

Ta có:

\(\text{VT}=\left(\frac{a}{b}+\frac{c}{b}-1\right)\left(\frac{b}{c}+\frac{a}{c}-1\right)\left(\frac{c}{a}+\frac{b}{a}-1\right)\)

\(=\frac{(a+c-b)(b+a-c)(c+b-a)}{abc}\)

Áp dụng BĐT Cauchy:

\((a+c-b)(b+a-c)\leq \left(\frac{a+c-b+b+a-c}{2}\right)^2=a^2\)

\((b+a-c)(c+b-a)\leq \left(\frac{b+a-c+c+b-a}{2}\right)^2=b^2\)

\((a+c-b)(c+b-a)\leq \left(\frac{a+c-b+c+b-a}{2}\right)^2=c^2\)

Nhân theo vế:

\(\Rightarrow [(a+c-b)(b+a-c)(c+b-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+c-b)(b+a-c)(c+b-a)\leq abc\)

\(\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

AH
Akai Haruma
Giáo viên
9 tháng 2 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky ta có:

\(\left (\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)(x+x+x+y+y+z)\geq (1+1+1+1+1+1)^2\)

\(\Leftrightarrow \frac{3}{x}+\frac{2}{y}+\frac{1}{z}\geq \frac{36}{3x+2y+z}\)

Thực hiện tương tự:

\(\frac{3}{y}+\frac{2}{z}+\frac{1}{x}\geq \frac{36}{3y+2z+x}\)

\(\frac{3}{z}+\frac{2}{x}+\frac{1}{y}\geq \frac{36}{3z+2x+y}\)

Cộng theo vế các BĐT vừa có thu được:

\(6\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 36\left(\frac{1}{3x+2y+z}+\frac{1}{3y+2z+x}+\frac{1}{3z+2x+y}\right)\)

\(\Leftrightarrow 72\geq 36\left(\frac{1}{3x+2y+z}+\frac{1}{3y+2z+x}+\frac{1}{3z+2x+y}\right)\)

\(\Leftrightarrow P\leq 2\)

Vậy \(P_{\max}=2\). Dấu bằng xảy ra khi \(x=y=z=\frac{1}{4}\)

6 tháng 5 2017

Theo đề thì:\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{2}{z}=0\)

\(\Leftrightarrow xz+yz-2xy=0\)

Cũng từ \(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{2}{z}=0\)

\(\Leftrightarrow\dfrac{2}{z}=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\)

\(\Leftrightarrow z\le\sqrt{xy}\)

\(\Leftrightarrow z^2\le xy\)

Quay lại bài toán ta có:

\(T=\dfrac{x+z}{2x-z}+\dfrac{z+y}{2y-z}=\dfrac{2z^2-6xy-\left(xz+yz-2xy\right)}{-z^2+2\left(xz+yz-2xy\right)}\)

\(=\dfrac{6xy-2z^2}{z^2}\ge\dfrac{6xy-2xy}{xy}=4\)

Vậy GTNN là T = 4 khi x = y = z = 1

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+x+y+z)\geq (1+1+1+1)^2\)

\(\Rightarrow \frac{2}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{16}{2x+y+z}\)

Hoàn toàn tương tự:

\(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\geq \frac{16}{x+2y+z}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\geq \frac{16}{x+y+2z}\)

Cộng theo vế các BĐT vừa thu được:

\(\Rightarrow 4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow 16\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow \frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1\)

Ta có đpcm.

14 tháng 10 2018

Ta có :

\(\dfrac{1}{2x+y+z}=\dfrac{16}{16\left(x+x+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+2y+z}=\dfrac{16}{16\left(x+y+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}=\dfrac{16}{16\left(x+y+z+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

Cộng từng vế của BĐT ta được :

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Vậy BĐT đã được chứng minh !

6 tháng 11 2018

\(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)

\(\le\dfrac{1}{4}.\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)=\dfrac{1}{16}.\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Tuong tu : \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}.\left(\dfrac{2}{y}+\dfrac{1}{z}+\dfrac{1}{x}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{2}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)\)

=> \(VT\le\dfrac{1}{16}.\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{2}{y}+\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{2}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)\)

= \(\dfrac{1}{16}.\left[4.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right]=1\left(dpcm\right)\)

6 tháng 11 2018

Áp dụng bđt Cauchy-Schwarz:

\(\dfrac{1}{2x+y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

Cộng theo vế suy ra đpcm. \("="\Leftrightarrow x=y=z=\dfrac{3}{4}\)