K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8

\(\Rightarrow\)a ( a + b + c ) + bc = 8

\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)

\(\Rightarrow abc\left(a+b+c\right)\le16\)

Vậy GTLN của A là 16 

15 tháng 8 2019

mình cảm ơn ạ

24 tháng 2 2023

Đề bài mình sửa lại : A = a2021 - b2021 + c2021 - (a - b + c)2021 

Ta có \(\sqrt{a}-\sqrt{b}+\sqrt{c}=\sqrt{a-b+c}\)

\(\Leftrightarrow a+b+c-2\sqrt{ab}-2\sqrt{bc}+2\sqrt{ca}=a-b+c\)

\(\Leftrightarrow b-\sqrt{ab}-\sqrt{bc}+\sqrt{ca}=0\)

\(\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)-\sqrt{c}\left(\sqrt{b}-\sqrt{a}\right)=0\)

\(\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right).\left(\sqrt{b}-\sqrt{a}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=c\\b=a\end{matrix}\right.\)

Với b = c 

A = a2021 - b2021 + c2021 - (a - b + c)2021 

= a2021 - a2021

= 0 

Tương tự với b = a ta được A = 0

Vậy A = 0 

24 tháng 2 2023

Nếu không sửa thì 

P = a2021 - (a + 2b)2021 khi b = c

hoặc P = c2021 - (2b + c)2021  khi b = a

và giá trị của P còn phụ thuộc vào a,b,c  , không phải là hằng số . 

 

5 tháng 12 2020

Đặt \(x=\sqrt{bc};y=\sqrt{ca};z=\sqrt{ab}\)\(\Rightarrow x^2+y^2+z^2+xyz=4\)\(\Rightarrow\left(x+y+z\right)^2-4=2\left(xy+yz+zx\right)-xyz\)

\(\Rightarrow\left(x+y+z\right)^2-4\left(x+y-z\right)+4=\left(2-x\right)\left(2-y\right)\left(2-z\right)\)\(\le\left(\frac{6-x-y-z}{3}\right)^3\)

Đặt \(t=x+y+z\Rightarrow\left(t-6\right)^3+27\left(t^2-4t+4\right)\le0\)\(\Leftrightarrow\left(t-3\right)\left(t+6\right)^2\le0\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\left(đpcm\right)\)

Dấu '=' xảy ra <=> a=b=c=1

5 tháng 12 2020

Mình chưa hiểu ở dòng thứ 3 tại sao bạn lại đánh giá đc nó nhỏ hơn hoặc bằng \(\left(\frac{6-x-y-z}{3}\right)^3\)

27 tháng 6 2021

Áp dụng AM-GM có:

\(2a^2+2b^2\ge4ab\)

\(8b^2+\dfrac{1}{2}c^2\ge4bc\)

\(8a^2+\dfrac{1}{2}c^2\ge4ac\)

Cộng vế với vế \(\Rightarrow VT\ge4\left(ab+bc+ac\right)=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}ab+bc+ac=1\\a=b=\dfrac{c}{4}\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{3};c=\dfrac{4}{3}\)

31 tháng 8 2021

CMR gì bạn?

Đề không hiện 

31 tháng 8 2021

undefined

Áp dụng BĐT cô si với hai số không âm, Ta có: 

\(\left(a+b+c\right)^2=1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\forall b,c\ge0\)

\(\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}a+b+c=1\\b=c\\a=b+c\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

Áp dụng BĐT Cô si với 2 số dương ta có: 

\(\frac{a}{b}+\frac{b}{a}\ge2,\frac{b}{c}+\frac{c}{b}\ge2,\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)(đúng) 

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(do a+b+c=1)