Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8
\(\Rightarrow\)a ( a + b + c ) + bc = 8
\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)
\(\Rightarrow abc\left(a+b+c\right)\le16\)
Vậy GTLN của A là 16
Đề bài mình sửa lại : A = a2021 - b2021 + c2021 - (a - b + c)2021
Ta có \(\sqrt{a}-\sqrt{b}+\sqrt{c}=\sqrt{a-b+c}\)
\(\Leftrightarrow a+b+c-2\sqrt{ab}-2\sqrt{bc}+2\sqrt{ca}=a-b+c\)
\(\Leftrightarrow b-\sqrt{ab}-\sqrt{bc}+\sqrt{ca}=0\)
\(\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)-\sqrt{c}\left(\sqrt{b}-\sqrt{a}\right)=0\)
\(\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right).\left(\sqrt{b}-\sqrt{a}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=c\\b=a\end{matrix}\right.\)
Với b = c
A = a2021 - b2021 + c2021 - (a - b + c)2021
= a2021 - a2021
= 0
Tương tự với b = a ta được A = 0
Vậy A = 0
Đặt \(x=\sqrt{bc};y=\sqrt{ca};z=\sqrt{ab}\)\(\Rightarrow x^2+y^2+z^2+xyz=4\)\(\Rightarrow\left(x+y+z\right)^2-4=2\left(xy+yz+zx\right)-xyz\)
\(\Rightarrow\left(x+y+z\right)^2-4\left(x+y-z\right)+4=\left(2-x\right)\left(2-y\right)\left(2-z\right)\)\(\le\left(\frac{6-x-y-z}{3}\right)^3\)
Đặt \(t=x+y+z\Rightarrow\left(t-6\right)^3+27\left(t^2-4t+4\right)\le0\)\(\Leftrightarrow\left(t-3\right)\left(t+6\right)^2\le0\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\left(đpcm\right)\)
Dấu '=' xảy ra <=> a=b=c=1
Mình chưa hiểu ở dòng thứ 3 tại sao bạn lại đánh giá đc nó nhỏ hơn hoặc bằng \(\left(\frac{6-x-y-z}{3}\right)^3\)
Áp dụng AM-GM có:
\(2a^2+2b^2\ge4ab\)
\(8b^2+\dfrac{1}{2}c^2\ge4bc\)
\(8a^2+\dfrac{1}{2}c^2\ge4ac\)
Cộng vế với vế \(\Rightarrow VT\ge4\left(ab+bc+ac\right)=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}ab+bc+ac=1\\a=b=\dfrac{c}{4}\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{3};c=\dfrac{4}{3}\)
Áp dụng BĐT cô si với hai số không âm, Ta có:
\(\left(a+b+c\right)^2=1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\forall b,c\ge0\)
\(\Rightarrow b+c\ge16abc\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}a+b+c=1\\b=c\\a=b+c\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)
Áp dụng BĐT Cô si với 2 số dương ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2,\frac{b}{c}+\frac{c}{b}\ge2,\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)(đúng)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(do a+b+c=1)
Bạn xem lại, làm gì có cái ảnh đề nào đâu?