Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một dạng rất uen thuộc của lượng giác là tìm gtnn,ln bằng cách đặt ẩn là sinx và cosx
\(x^2+y^2-2x-4y+4=0\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=1\)
\(\left\{{}\begin{matrix}\sin\alpha=x-1\\\cos\alpha=y-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sin\alpha+1\\y=\cos\alpha+2\end{matrix}\right.\)
\(\Rightarrow P=\left(\sin\alpha+1\right)^2-\left(\cos\alpha+2\right)^2+2\sqrt{3}\left(\sin\alpha+1\right)\left(\cos\alpha+2\right)-2\left(\sin\alpha+1\right)-4\sqrt{3}\left(\sin\alpha+1\right)-4\left(\cos\alpha+2\right)-2\sqrt{3}\left(\cos\alpha+2\right)-3+4\sqrt{3}\)
\(\Leftrightarrow P=\sin^2\alpha-\cos^2\alpha+2\sqrt{3}\sin\alpha\cos\alpha-16\)
Ta đưa về góc 2 alpha để dễ xét
\(\Leftrightarrow P=\frac{1-\cos2\alpha}{2}-\frac{\cos2\alpha+1}{2}+\sqrt{3}\sin2\alpha-16\)
\(\Rightarrow P=\sqrt{3}\sin2\alpha-\cos2\alpha-16\)
\(P=2\sin\left(2\alpha-\frac{\pi}{6}\right)-16\)
\(\Rightarrow2.\left(-1\right)-16\le P\le2.1-16\)
\(\Rightarrow\left\{{}\begin{matrix}P_{min}=-18;"="\Leftrightarrow2\alpha-\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\\P_{max}=-14;"="\Leftrightarrow2\alpha-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
Bạn tự thay vô x và y để xét dấu bằng nhé
a) Ta có:
−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤2(1+cosx+1≤3
Vậy y ≤ 3, ∀ x ∈ R
Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)
Vậy ymax = 3 khi x = k2π
b) Ta có:
Với mọi x ∈ R, ta có:
sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1
Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z
a: ĐKXĐ: \(\left(x+2\right)\left(x+3\right)>=0\)
=>\(\left[{}\begin{matrix}x>=-2\\x< =-3\end{matrix}\right.\)
\(y=\sqrt{\left(x+2\right)\left(x+3\right)}=\sqrt{x^2+5x+6}\)
=>\(y'=\dfrac{\left(x^2+5x+6\right)'}{2\sqrt{x^2+5x+6}}=\dfrac{2x+5}{2\sqrt{x^2+5x+6}}\)
y'>0
=>\(\dfrac{2x+5}{2\sqrt{x^2+5x+6}}>0\)
=>2x+5>0
=>\(x>-\dfrac{5}{2}\)
Kết hợp ĐKXĐ, ta được: x>=-2
Đặt y'<0
=>2x+5<0
=>2x<-5
=>\(x< -\dfrac{5}{2}\)
Kết hợp ĐKXĐ, ta được: x<=-3
Vậy: Hàm số đồng biến trên \([-2;+\infty)\) và nghịch biến trên \((-\infty;-3]\)
b: ĐKXĐ: \(\dfrac{2x+1}{x-3}>=0\)
=>\(\left[{}\begin{matrix}x>3\\x< =-\dfrac{1}{2}\end{matrix}\right.\)
\(y=\sqrt{\dfrac{2x+1}{x-3}}\)
=>\(y'=\dfrac{\left(\dfrac{2x+1}{x-3}\right)'}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
=>\(y'=\dfrac{\dfrac{\left(2x+1\right)'\left(x-3\right)-\left(2x+1\right)\left(x-3\right)'}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
=>\(y'=\dfrac{\dfrac{2\left(x-3\right)-2x-1}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
\(=-\dfrac{\dfrac{7}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}< 0\forall x\) thỏa mãn ĐKXĐ, trừ x=-1/2 ra
=>Hàm số luôn đồng biến trên \(\left(3;+\infty\right);\left(-\infty;-\dfrac{1}{2}\right)\)
c:
ĐKXĐ: x>=-3
\(y=\left(x+1\right)\sqrt{x+3}\)
=>\(y'=\left(x+1\right)'\cdot\sqrt{x+3}+\left(x+1\right)\cdot\sqrt{x+3}'\)
=>\(y'=\sqrt{x+3}+\left(x+1\right)\cdot\dfrac{\left(x+3\right)'}{2\sqrt{x+3}}\)
=>\(y'=\sqrt{x+3}+\dfrac{x+1}{2\sqrt{x+3}}\)
=>\(y'=\dfrac{2x+6+x+1}{2\sqrt{x+3}}=\dfrac{3x+7}{2\sqrt{x+3}}\)
Đặt y'>0
=>3x+7>0
=>x>-7/3
Kết hợp ĐKXĐ, ta được: x>-7/3
Đặt y'<0
3x+7<0
=>x<-7/3
Kết hợp ĐKXĐ, ta được: \(-3< x< -\dfrac{7}{3}\)
Vậy: Hàm số đồng biến trên \(\left(-\dfrac{7}{3};+\infty\right)\) và nghịch biến trên \(\left(-3;-\dfrac{7}{3}\right)\)
d: \(y=\dfrac{x-1}{x^2+1}\)(ĐKXĐ: \(x\in R\))
=>\(y'=\dfrac{\left(x-1\right)'\left(x^2+1\right)-\left(x-1\right)\left(x^2+1\right)'}{\left(x^2+1\right)^2}\)
=>\(y'=\dfrac{x^2+1-2x\left(x-1\right)}{\left(x^2+1\right)^2}=\dfrac{-x^2+2x+1}{\left(x^2+1\right)^2}\)
Đặt y'>0
=>\(-x^2+2x+1>0\)
=>\(1-\sqrt{2}< x< 1+\sqrt{2}\)
Đặt y'<0
=>\(-x^2+2x-1< 0\)
=>\(\left[{}\begin{matrix}x>1+\sqrt{2}\\x< 1-\sqrt{2}\end{matrix}\right.\)
Vậy: hàm số đồng biến trên khoảng \(\left(1-\sqrt{2};1+\sqrt{2}\right)\)
hàm số nghịch biến trên khoảng \(\left(1+\sqrt{2};+\infty\right);\left(-\infty;1-\sqrt{2}\right)\)
Bạn xem lại đề, với a;b;c dương thì biểu thức P không tồn tại max nếu đề hoàn toàn đúng
Muốn P tồn tại max thì a;b;c cần không âm (nghĩa là có thể bằng 0)
mình nhầm bạn ơi
đề đúng là không âm nha