\(\frac{1}{a}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

qsaxdcvf

12 tháng 6 2017

Áp dụng bất đẳng thức Cauchy-shwarz dạng Engel ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\)

Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)

Vậy...

13 tháng 5 2019

1.

Áp dụng bất đẳng thức Cô-si thôi:

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)

Dấu "=" khi a = b

2.

Vì a,b,c là ba cạnh tam giác nên dễ thấy các mẫu số dương.

Áp dụng câu 1 ta có:

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Tương tự:

\(\frac{1}{c+a-b}+\frac{1}{b+c-a}\ge\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{b+c-a}+\frac{1}{a+b-c}\ge\frac{4}{2b}=\frac{2}{b}\)

Cộng theo vế ta được:

\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

Dấu "=" xảy ra khi a = b = c hay tam giác đó đều.

6 tháng 4 2017

1 bai thoi cung dc

6 tháng 2 2017

a)Áp dụng BDT AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}}=3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế ta có: 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)

Dấu "=" xảy ra khi \(a=b=c\)

17 tháng 3 2019

Ta có: abc = 1, thế vào ta được:

\(\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\)

\(=\frac{b^2c^2}{a^2bc\left(b+c\right)}+\frac{c^2a^2}{b^2ac\left(c+a\right)}+\frac{a^2b^2}{c^2ab\left(a+b\right)}\)

Áp dụng BĐT Cauchy - Schwarz dạng Engel, ta có:

\(VT\ge\frac{\left(bc+ca+ac\right)^2}{abc\left(2ab+2bc+2ca\right)}=\frac{\left(bc+ca+ac\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

22 tháng 12 2019

BĐT Cauchy-Schwarz dạng Engel là gì vậy bn?

Nhờ bn giải thích dùmhaha

25 tháng 12 2017

Các bạn và thầy cô giúp mk đi

13 tháng 5 2021

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)

=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)

=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)

Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)

=> (1) đúng 

=> BĐTđược chứng minh

14 tháng 5 2021

b)Đặt  \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).

\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).

\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).

Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).

 Chứng minh tương tự, ta được:

\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).

Chứng minh tương tự, ta được:

\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).

\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).

\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).

Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).

\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).

\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).

\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(A\ge\frac{15}{2}\).

Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).

Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)       (*)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

<=>\(\frac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\ge0\)

<=>\(\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)

<=>\(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(1)

Vì (1) luôn đúng \(\forall a,b\subsetℕ^∗\)

Nên (*) đúng

27 tháng 4 2021

biến đổi tương đương như bạn kia hoặc Bunyakovsky dạng phân thức cũng được