Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: CMR \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\geq \frac{3}{2}\)
Đặt biểu thức đã cho là $P$
Áp dụng BĐT AM-GM:
\(P=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}=(a+b+c)-\left(\frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2}\right)\)
\(\geq (a+b+c)-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=a+b+c-\frac{ab+bc+ac}{2}\)
Mà cũng theo BĐT AM-GM
\(3(a+b+c)=(a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow a+b+c\geq ab+bc+ac\)
Do đó: \(P\geq a+b+c-\frac{ab+bc+ac}{2}\geq a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
\(BDT\Leftrightarrow\frac{a^3}{\left(1-a\right)^2}+\frac{b^3}{\left(1-b\right)^2}+\frac{c^3}{\left(1-c\right)^2}\ge\frac{1}{4}\)
Ta có BĐT phụ: \(\frac{a^3}{\left(1-a\right)^2}\ge a-\frac{1}{4}\)
\(\Leftrightarrow\frac{\left(3a-1\right)^2}{4\left(a-1\right)^2}\ge0\forall0< a\le\frac{1}{3}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{b^3}{\left(1-b\right)^2}\ge b-\frac{1}{4};\frac{c^3}{\left(1-c\right)^2}\ge c-\frac{1}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\left(a+b+c\right)-\frac{1}{4}\cdot3=1-\frac{3}{4}=\frac{1}{4}=VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT cô si ta có:
\(\frac{a^3}{\left(b+c\right)^2}+\frac{1a}{4}\ge\frac{a^2}{b+c}\)\(,\frac{b^3}{\left(c+a\right)^2}+\frac{1b}{4}\ge\frac{b^2}{a+c},\frac{c^3}{\left(a+b\right)^2}+\frac{1c}{4}\ge\frac{c^2}{a+b}\)
Cộng lại ta có
\(VT\ge\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}-\frac{1}{4}\left(a+b+c\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}-\frac{1}{4}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)
Dấu =tự tìm Ok
Ta co:
\(\sqrt{2\left(b+1\right)}\le\frac{b+3}{2}\Rightarrow\frac{a}{\sqrt{2\left(b+1\right)}}\ge\frac{2a}{b+3}\)
Tuong tu:\(\frac{b}{\sqrt{2\left(c+1\right)}}\ge\frac{2b}{c+3};\frac{c}{\sqrt{2\left(a+1\right)}}\ge\frac{2c}{a+3}\)
\(\Rightarrow\frac{1}{\sqrt{2}}\left(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\right)\ge2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\)
\(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\)
\(=\frac{a^2}{ab+3a}+\frac{b^2}{bc+3b}+\frac{c^2}{ca+3c}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca+9}\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+9}=\frac{9}{\frac{9}{3}+9}=\frac{3}{4}\)
\(\Rightarrow2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\ge\frac{3}{2}\)
Hay \(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\ge\frac{3\sqrt{2}}{2}\)
Dau '=' xay ra khi \(a=b=c=3\)
a/ Biến đổi tương đương:
\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)
\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)
b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế ta có đpcm
sửa lại
\(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
\(=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
áp dụng bđt cauchy ta có:
\(b^2+1\ge2b;c^2+1\ge2c;a^2+1\ge2a\)
\(\Rightarrow a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\ge a-\frac{ab^2}{2b}+b-\frac{bc^2}{2b}+c-\frac{ca^2}{2a}\)
\(=a+b+c-\frac{ab+bc+ca}{2}\)
áp dụng cauchy ta có:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\left(Q.E.D\right)\)
dấu bằng xảy ra khi a=b=c=1
đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
\(=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\le3-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=3-\left(\frac{ab+bc+ca}{2}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}\left(Q.E.D\right)\)