Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left[\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
Lại có: \(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{25k}{8k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Theo bài ra:
\(\dfrac{a}{b}=\dfrac{9}{4}\Rightarrow a=\dfrac{9}{4}.b\)
\(\dfrac{b}{c}=\dfrac{5}{3}\Rightarrow c=b:\dfrac{5}{3}\)
Thay \(a=\dfrac{9}{4b};c=b:\dfrac{5}{3}\) vào \(\dfrac{a-b}{b-c}\), ta có:
\(\dfrac{\dfrac{9b}{4}-b}{b-\dfrac{3b}{5}}=\dfrac{\dfrac{9b}{4}-\dfrac{4b}{4}}{\dfrac{5b}{5}-\dfrac{3b}{5}}=\dfrac{5b}{4}:\dfrac{2b}{5}=\dfrac{5b}{4}.\dfrac{5}{2b}=\dfrac{25}{8}\)
Vậy: \(\dfrac{a-b}{b-c}=\dfrac{25}{8}\)
Giải:
Ta có: \(a:b=9:4\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(b:c=5:3\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left\{\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
Lại có: \(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{\left(45-20\right)k}{\left(20-12\right)k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Ta có :
\(\frac{a}{b}=\frac{9}{4}\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\) (1)
\(\frac{b}{c}=\frac{5}{3}\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow a=45k;b=20k;c=12k\) Thay vào \(\frac{a-b}{b-c}\) ta được :
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{25k}{8k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Giải:
Ta có: \(a:b=9:4\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(b:c=5:3\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow a=45k,b=20k,c=12k\)
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{\left(45-20\right)k}{\left(20-12\right)k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
\(\frac{a}{b}=\frac{9}{4}\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)(1)
\(\frac{b}{c}=\frac{5}{3}\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)(2)
Từ (1) và (2) => \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt : \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\) => a = 45k ; b = 20k ; c = 12k . Thay vào \(\frac{a-b}{b-c}\) ta được :
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{k\left(45-20\right)}{k\left(20-12\right)}=\frac{45-20}{20-12}=\frac{25}{8}\)
\(\frac{a}{5}=\frac{b}{3},\frac{b}{7}=\frac{c}{9}\Rightarrow\frac{a}{35}=\frac{b}{21},\frac{b}{21}=\frac{c}{27}\Rightarrow\frac{a}{35}=\frac{b}{21}=\frac{c}{27}\)
\(\Rightarrow\frac{a}{35}=\frac{b}{21}=\frac{c}{27}=\frac{a+b}{35+21}=\frac{a+b}{56}=\frac{b-c}{21-27}=\frac{b-c}{-6}\)(T/C)
\(\Rightarrow\frac{a+b}{56}=\frac{b-c}{-6}=\frac{a+b}{b-c}=\frac{56}{-6}=-\frac{28}{3}\)
Giải:
Ta có: \(a:b=5:3\Rightarrow\frac{a}{5}=\frac{b}{3}\Rightarrow\frac{a}{35}=\frac{b}{21}\)
\(b:c=7:9\Rightarrow\frac{b}{7}=\frac{c}{9}\Rightarrow\frac{b}{21}=\frac{c}{27}\)
\(\Rightarrow\frac{a}{35}=\frac{b}{21}=\frac{c}{27}\)
Đặt \(\frac{a}{35}=\frac{b}{21}=\frac{c}{27}=k\)
\(\Rightarrow a=35k,b=21k,c=27k\)
Từ đó \(\frac{a+b}{b-c}=\frac{35k+21k}{21k-27k}=\frac{56k}{-6k}=\frac{-28}{3}\)
Vậy \(\frac{a+b}{b-c}=\frac{-28}{3}\)
Bài 3: Gọi số học sinh giỏi,khá,trung bình lần lượt là a,b,c
Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\); \(\dfrac{b}{c}=\dfrac{4}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\); \(a+b+c=35\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{35}{35}=1\)
Ta có : \(\dfrac{a}{8}=1\Rightarrow a=8\)
Làm tương tự ta tính được : \(b=12;c=15\)
Vậy số học sinh giỏi là 8 bạn
Số học sinh khá là 12 bạn
Số học sinh trung bình là 15 bạn
Bài 1:
\(\sqrt{1}-\sqrt{4}+\sqrt{9}-\sqrt{16}+\sqrt{25}-\sqrt{36}+.....-\sqrt{400}\)
\(=1-2+3-4+5-6+.....-20\)
\(=\left(1-2\right)+\left(3-4\right)-\left(5-6\right)+.....+\left(19-20\right)\)
\(=\left(-1\right)\times\dfrac{\dfrac{\left(20-1\right)\times1+1}{2}}{2}\)
\(=\left(-1\right)\times10\)
\(=-10\)
Dễ thế này mà ko ai lm à
Chúc bn học tốt
Ta có \(\dfrac{a}{b}=\dfrac{9}{4}\)=>\(\dfrac{a}{9}=\dfrac{b}{4}\)=>\(\dfrac{a}{45}=\dfrac{b}{20}\)(1)
\(\dfrac{b}{c}=\dfrac{5}{3}\)=>\(\dfrac{b}{5}=\dfrac{c}{3}\) =>\(\dfrac{b}{20}=\dfrac{c}{12}\)(2)
Từ (1) và (2) ta có :
\(\dfrac{a}{45}=\dfrac{b}{20}=\dfrac{c}{12}\)( Quy đồng mẫu)
Đặt \(\dfrac{a}{45}=\dfrac{b}{20}=\dfrac{c}{12}\)=k
=> a=45k , b=20k , c=12k (*)
Thay (*) vào \(\dfrac{a-b}{b-c}\) ta có :
\(\dfrac{a-b}{b-c}=\dfrac{45k-20k}{20k-12k}=\dfrac{25k}{8k}=\dfrac{25}{8}\)
Vậy tỉ số của \(\dfrac{a-b}{b-c}\) là \(\dfrac{25}{8}\)