\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

Ta có:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)

*Nếu a+b+c=0

=> a=-(b+c)

     b=-(a+c)

     c=-(a+b)

Thay 3 ý trên vào P, ta có:

\(P=\frac{b+c}{-\left(b+c\right)}+\frac{a+c}{-\left(a+c\right)}+\frac{a+b}{-\left(a+b\right)}\)

P=-1+(-1)+(-1)

P=-3

Nếu a+b+c khác 0

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)

\(\frac{a}{b+c}=\frac{1}{2}\) => 2a=b+c (1)

\(\frac{b}{a+c}=\frac{1}{2}\) => 2b=a+c (2)

\(\frac{c}{a+b}=\frac{1}{2}\) => 2c=a+b (3)

(1)-(2)

2a-2b=b-a

3a=3b

=>a=b (4)

(2)-(3)

2b-2c=c-b

3b=3c

=>b=c (5)

Từ (4) và (5)=> a=b=c (mâu thuẫn với đề bài)

Vậy M=-3

19 tháng 10 2016

Ta có: 

a/b+c =b/a+c =c/a+b hay b+c/a =a+c/b =a+b/c =(b+c)+(a+c)+(a+b)a+b+c =2a+2b+2c/a+b+c =2(a+b+c)/a+b+c =2

=>b+c/a =2;a+c/b =2;a+b/c =2

=>P=b+c/a +a+c/b +a+b/c =2+2+2=6

Vậy P=6 

4 tháng 9 2017

cac ban oi ket ban voi tui di

4 tháng 9 2017

học tính chất của dãy tỉ số bằng nhau chưa?

19 tháng 6 2019

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\) 

+) a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow P=-3\) 

+) a+b+c khác 0 => \(\hept{\begin{cases}a=\frac{1}{2}\left(b+c\right)\\b=\frac{1}{2}\left(a+c\right)\\c=\frac{1}{2}\left(b+a\right)\end{cases}}\) 

\(\Rightarrow P=\frac{3}{2}\) 

Vậy: P = 3/2 hoac P=-3

1 tháng 8 2020

Vì \(a,b,c\ne0\)

\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

1 tháng 8 2020

Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

=> \(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

=> \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

Nếu a + b + c = 0

=> a + b = - c

=> b + c = - a

=> a + c = - b

Khi đó P = \(\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\)

Nếu a + b + c \(\ne0\)

=> \(\frac{1}{b+c}=\frac{1}{a+c}=\frac{1}{a+b}\)

=> b + c = a + c = a + b

=> \(\hept{\begin{cases}b+c=a+c\\b+c=a+b\end{cases}\Rightarrow\hept{\begin{cases}a=b\\a=c\end{cases}}\Rightarrow a=b=c}\)

Khi đó P = \(\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

=> P = 6

Vậy khi a + b + c = 0 => P = -3

khi a + b + c  \(\ne0\) => P = 6

10 tháng 7 2015

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow P=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow P=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

vậy \(P=\frac{3}{2}\)

7 tháng 12 2018

Ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\Leftrightarrow\)

\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=2\)

\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=3.2=6\)

7 tháng 12 2018

bài này có 2 trường hợp nhé =))

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\Rightarrow1+\frac{a}{b+c}=1+\frac{b}{a+c}=1+\frac{c}{a+b}\)

\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

\(TH1:a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}\Rightarrow P=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-3}\)

\(TH2:a+b+c\ne0\)

\(\Rightarrow\hept{\begin{cases}b+c=a+c\Rightarrow a=b\\a+c=a+b\Rightarrow c=b\\a+b=b+c\Rightarrow a=c\end{cases}\Rightarrow a=b=c}\)

\(\Rightarrow P=\frac{a+a}{a}+\frac{b+b}{b}+\frac{c+c}{c}=2.3=6\)

Vậy P=-3 hay P=6

26 tháng 6 2017

Câu 1:

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)

Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)

\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)

Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

Câu 2:

Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:

\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)

Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

Thay vào P ta được:

\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Vậy P = -3

Câu 3:

Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4

- Nếu a + b + c + d = 0 => a + b = -(c + d)

                                        b + c = -(d + a)

                                        c + d = -(a + b)

                                        d + a = -(b + c)

Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4

12 tháng 10 2017

câu hỏi là j