\(\dfrac{a^2}{a+2b^2}+\dfrac{b^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 5 2018

Lời giải:

Ta có:

\(\text{VT}=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}\)

\(=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=(a+b+c)-2\left(\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\right)\)

Áp dụng BĐT Cauchy cho các số dương:

\(\text{VT}\geq (a+b+c)-2\left(\frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\right)\)

\(\Leftrightarrow \text{VT}\geq (a+b+c)-\frac{2}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Áp dụng BĐT Cauchy tiếp:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}\)

\(=\frac{2(ab+bc+ac)+3}{3}\leq \frac{2.\frac{(a+b+c)^2}{3}+3}{3}\)

Do đó: \(\text{VT}\geq (a+b+c)-\frac{2}{3}.\frac{2.\frac{(a+b+c)^2}{3}+3}{3}=1\) do $a+b+c=3$

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5)...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3

NV
10 tháng 11 2018

\(a^2+4b^2=23ab\Rightarrow a^2+4ab+4b^2=27ab\Rightarrow\left(a+2b\right)^2=27ab\)

\(\Rightarrow\dfrac{\left(a+2b\right)^2}{9}=3ab\)\(\Rightarrow\left(\dfrac{a+2b}{3}\right)^2=3ab\)

Lấy logarit cơ số c hai vế:

\(log_c\left(\dfrac{a+2b}{3}\right)^2=log_c\left(3ab\right)\)

\(\Rightarrow2log_c\dfrac{a+2b}{3}=log_c3+log_ca+log_cb\)

\(\Rightarrow log_c\dfrac{a+2b}{3}=\dfrac{1}{2}\left(log_ca+log_cb+log_c3\right)\)

11 tháng 11 2018

Bạn ơi tại sao có khoảng trống vậy??? khoảng trống ấy là gì

4 tháng 4 2018

óc chó tự nghĩ đi nhá ahihihi

Bài 1: a) ta có: \(\dfrac{50}{100}=\dfrac{1}{2};\dfrac{-\dfrac{4}{13}}{-\dfrac{8}{13}}=\dfrac{1}{2};\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{1}{2};\dfrac{-\dfrac{2}{17}}{-\dfrac{4}{17}}=\dfrac{1}{2}\) \(\dfrac{50}{100}=\dfrac{\dfrac{4}{13}}{\dfrac{8}{13}}=\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{\dfrac{2}{17}}{\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{1}{2}\) vậy...
Đọc tiếp

Bài 1:

a)

ta có: \(\dfrac{50}{100}=\dfrac{1}{2};\dfrac{-\dfrac{4}{13}}{-\dfrac{8}{13}}=\dfrac{1}{2};\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{1}{2};\dfrac{-\dfrac{2}{17}}{-\dfrac{4}{17}}=\dfrac{1}{2}\)

\(\dfrac{50}{100}=\dfrac{\dfrac{4}{13}}{\dfrac{8}{13}}=\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{\dfrac{2}{17}}{\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{1}{2}\)

vậy \(A=\dfrac{1}{2}\)

b)

\(B=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\\ B=\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{2}{29}-\dfrac{2}{29}+\dfrac{3}{39}-...-\dfrac{199}{1999}+\dfrac{200}{2009}\\ B=\dfrac{200}{2009}\)

Bài 2:

\(\dfrac{a}{b}=\dfrac{b}{3c}=\dfrac{c}{9a}=\dfrac{b+c}{3c+9a}\)

suy ra: \(b=\dfrac{3c\left(b+c\right)}{3c+9a}=\dfrac{3cb+3c^2}{3c+9a}=\dfrac{bc+c^2}{c+3a}\)

\(c=\dfrac{9a\left(b+c\right)}{3c+9a}=\dfrac{9ab+9ac}{3c+9a}=\dfrac{3ab+3ac}{c+3a}\)

giả sử b=c là đúng thì :\(\dfrac{bc+c^2}{c+3a}=\dfrac{3ab+3ac}{c+3a}\)

hay \(bc+c^2=3ab+3ac\\ \Leftrightarrow c^2+bc-3ab-3ac=0\)

\(\Leftrightarrow\left(b+c\right)\left(c-3a\right)=0\Rightarrow c-3a=0\Rightarrow c=3a\)

b) \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}+\dfrac{2}{2014.2016}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2016}\right)=\dfrac{2015}{4032}< 1\)

\(1< \dfrac{4}{3}\) nên \(\dfrac{2015}{4032}< \dfrac{4}{3}\)

hay \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}< \dfrac{4}{3}\)

bài 3:

a)\(\left(x-y\right)\left(x+y\right)=x^2-y^2-xy+xy=x^2-y^2\) (đpcm)

b) áp dụng BĐT tam giác, ta có:

\(a+b>c\Rightarrow a+b-c>0\\ b+c>a\Rightarrow b+c-a< 0\\ a+c>b\Rightarrow a-b+c>0\)

suy ra: \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< 0­\: ­\: ­\: ­\: ­\: ­\: \)

đồng thời \(abc>0\) với mọi a, b, c dương.

nên \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< abc\)

ko tìm dc dấu bằng xảy ra.

3
22 tháng 5 2017

hãy lướt qua và coi như ko có j -_-

22 tháng 5 2017

@Nguyễn Huy Tú

Câu 1:(2 điểm): a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\). Tính giá trị của biểu thức: \(A=\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}\) b) Rút gọn biểu thức: \(B=\dfrac{\sqrt{\sqrt{5}+2}\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\) Câu 2:(1.5 điểm): Giải phương trình: \(x^2+\dfrac{4x^2}{x^2-4x+4}=5\) Câu 3:(1.5 điểm): Tìm số tự nhiên y để...
Đọc tiếp

Câu 1:(2 điểm):
a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\). Tính giá trị của biểu thức: \(A=\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}\)
b) Rút gọn biểu thức: \(B=\dfrac{\sqrt{\sqrt{5}+2}\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
Câu 2:(1.5 điểm):
Giải phương trình: \(x^2+\dfrac{4x^2}{x^2-4x+4}=5\)
Câu 3:(1.5 điểm):
Tìm số tự nhiên y để \(\left(y^2+1\right)x^3+\left(y^3-1\right)x\) chia hết cho 6, biết x thuộc N*
Câu 4:(2,5 điểm):
Cho ABC nhọn, ba đường cao AD, BF, CE cắt nhau tại H.
a) Giả sử HB = 6cm; HF = 3cm; CE = 11cm và CH>HE. Tính độ dài CH;EH.
b)Gọi I là giao điểm EF và AH. Cmr \(\dfrac{IH}{AI};\dfrac{HD}{AD}\)
c) Gọi K là điểm nằm giữa C và D. Kẻ AS vuông góc HK tại S. Cm SK là phân giác của góc DSI
Câu 5:(1,5 điểm):
Cho tam giác ABC, I là điểm nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh BC, AC, AB lần lượt tại các điểm D, E, F. Cmr \(\dfrac{AI}{ID}+\dfrac{BI}{IE}+\dfrac{CI}{IF}\ge6\)
Câu 6:(1.5 điểm):
Cho x, y, z > 0. Cmr \(\dfrac{x^2-z^2}{y+z}+\dfrac{z^2-y^2}{x+y}+\dfrac{y^2-x}{x+z}\ge0\)

CÁC AE GIÚP EM VỚI (Chỉ cần làm 1trong 6 bài)

0
19 tháng 12 2018

Làm giúp mik cần gấp hihi

I love everyone <3 thank you very matcha

2 tháng 12 2017

Đặt \(\left(a^2;b^2;c^2\right)\rightarrow\left(x;y;z\right)\)thì bài toán trở thành:

Cho \(x;y;z\in\left[0;1\right]\)và không đồng thời bằng 0.Cm:\(\dfrac{x^2y+y^2z+z^2x+3}{x^{1006}+y^{1006}+z^{1006}}\ge2\)

Ta có: \(x^{1006}\le x^2\)\(\Leftrightarrow x^2\left(1-x^{1004}\right)\ge0\)(đúng vì \(0\le x\le1\))

Tương tự ta có: \(x^{1006}+y^{1006}+z^{1006}\le x^2+y^2+z^2\)

( Dấu = xảy ra ở đây là cả 3 số bằng 1 hoặc 2 số bằng 1, 1 số bằng 0)

Lại có:\(x^2y\ge x^2y^2\Leftrightarrow x^2y\left(1-y\right)\ge0\left(true\right)\)

\(\Rightarrow x^2y+y^2z+z^2x\ge x^2y^2+y^2z^2+z^2x^2\)

( Dấu = xảy ra ở đây là cả 3 số bằng 1, hoặc 2 số bằng 1,1 số bằng 0 ;hoặc chỉ cần 1 số bằng 0,1 số bằng 1)

Giờ ta cần chứng minh:

\(\dfrac{x^2y^2+y^2z^2+z^2x^2+3}{x^2+y^2+z^2}\ge2\Leftrightarrow\sum\left(x^2-1\right)\left(y^2-1\right)\ge0\)(đúng)

(Dấu = xảy ra ở đây là chỉ cần 2 số bằng 1)

Kết hợp cả 3 TH dấu = ta được:BĐT xảy ra khi cả 3 số bằng 1 hoặc 2 số bằng 1; 1 số bằng 0

Đó là x;y;z.Khi đổi về a;b;c thì còn hoán vị cả \(-1;1\)

P/s: rắc rối mỗi cái điểm rơi :V