Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{a+b+c}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)=0\)
\(\Leftrightarrow\frac{b+c}{a\left(a+b+c\right)}+\frac{b+c}{bc}=0\)
\(\Leftrightarrow\left(b+c\right)\left(\frac{1}{a\left(a+b+c\right)}+\frac{1}{bc}\right)=0\)
\(\Leftrightarrow\left(b+c\right)\frac{bc+a^2+ab+ac}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(b+c\right)\frac{\left(a+b\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)
=> b+c=0 hoặc a+b=0 hoặc c+a=0
Đến đây bn => a=-b;b=-c;c=-a lần lượt thay vào VT là xog
Cho ba số a, b, c thỏa mãn a+b+c=0 và và a ≤ 1 , b ≤ 1 , c ≤ 1. Chứng minh rằng a 4 + b 6 + c 8 ≤ 2.
Từ giả thiết a ≤ 1 , b ≤ 1 , c ≤ 1 ta có a 4 ≤ a 2 , b 6 ≤ b 2 , c 8 ≤ c 2 . Từ đó a 4 + b 6 + c 8 ≤ a 2 + b 2 + c 2
Lại có: a − 1 b − 1 c − 1 ≤ 0 v à a + 1 b + 1 c + 1 ≥ 0 nên
a + 1 b + 1 c + 1 − a − 1 b − 1 c − 1 ≥ 0 ⇔ 2 a b + 2 b c + 2 c a + 2 ≥ 0 ⇔ − 2 a b + b c + c a ≤ 2
Hơn nữa a + b + c = 0 ⇔ a 2 + b 2 + c 2 = − a b + b c + c a ≤ 2
⇒ a 4 + b 6 + c 8 ≤ 2
b^2+c^2-a^2=(b+c)^2-2bc-a^2=(-a)^2-2bc+a^2=-2bc. Tuong tu roi quy dong len ban nhe^^
Từ giả thiết ta có : \(a+b=-c\Rightarrow a^2+b^2=c^2-2ab\left(1\right)\)
Chứng minh tương tự ta cũng có \(\hept{\begin{cases}a^2+c^2=b^2-2ac\left(2\right)\\b^2+c^2=a^2-2bc\left(3\right)\end{cases}}\)
Ta thay (1), (2), (3) vào phương trình đã cho ta được:
\(\frac{1}{a^2-2bc-a^2}+\frac{1}{b^2-2ac-b^2}+\frac{1}{c^2-2ab-c^2}\)
\(=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=-\frac{1}{2}\left(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}\right)\)
\(=\frac{1}{-2}\left(\frac{a+b+c}{abc}\right)=-\frac{1}{2}\left(\frac{0}{abc}\right)=0\RightarrowĐPCM\)
1.
Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)
Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)
Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)
Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)
Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)
Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)
Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)
Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)
\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)
Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng
Để chứng minh rằng a^2 + b^2 + c^2 < 2 với điều kiện a + b + c = 0 và -1 < a <= b <= c < 1, chúng ta có thể sử dụng phương pháp giả định trái ngược (proof by contradiction).
Giả sử rằng a^2 + b^2 + c^2 >= 2, sau đó chúng ta sẽ chứng minh rằng điều kiện a + b + c = 0 không thể thỏa mãn.
Với a + b + c = 0, chúng ta có thể viết lại bằng cách sử dụng c = -(a + b):
a^2 + b^2 + (-a-b)^2 >= 2
Mở ngoặc và rút gọn:
a^2 + b^2 + a^2 + 2ab + b^2 >= 2
3a^2 + 2ab + 2b^2 >= 2
Chúng ta sẽ chứng minh rằng bất phương trình trên không thể đúng với điều kiện -1 < a <= b <= c < 1.
Với -1 < a <= b <= c < 1, ta có:
-1 < a <= b <= -a-b < 1
Thêm cả hai vế của bất phương trình này:
-1 < a+b <= 0 < 1
Điều này cho thấy a + b không thể bằng 1 hoặc -1.
Tiếp theo, chúng ta chứng minh rằng bất phương trình 3a^2 + 2ab + 2b^2 >= 2 không thể đúng với a + b không bằng 1 hoặc -1.
Ta có:
3a^2 + 2ab + 2b^2 >= 2
Với a + b không bằng 1 hoặc -1, ta có:
3a^2 + 2ab + 2b^2 > 3a^2 - a^2 + 2ab + b^2
= 2a^2 + 2ab + b^2
= (a + b)^2 + a^2
Vì (a + b)^2 >= 0 và a^2 >= 0, ta có:
(a + b)^2 + a^2 >= 0 + 0 = 0
Điều này cho thấy rằng bất phương trình không thể đúng.
Vì vậy, giả định ban đầu là sai và chúng ta kết luận rằng a^2 + b^2 + c^2 < 2 với điều kiện a + b + c = 0 và -1 < a <= b <= c < 1.