Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a+b=1-ab nên a=0 và b=1 hoặc b=0 và a=1
TH1:
Nếu a=0 và b=1 thì trong biểu thức b+c=3-bc \(c\in\varnothing\)
=> Trường hợp này không thỏa mãn đề bài
TH2:
Nếu a=1 và b=0 thì trong biểu thức b+c=3-bc c=3 vì 0+3=3-0*3=3
Vậy a=1;b=0;c=3
=>S=a^2019+b^2019+c^2019
S=1^2019+0^2019+3^2019
S=1+0+3^2019
S=1+3^2019
Còn lại anh tự tính nhé, em chịu.
Với lại em mới lớp 6 thôi nên nếu em sai anh đừng ném đá em. Em cảm ơn anh!
a + b + c = a^3 + b^3 + c^3 = 1
<=> (a + b + c)^3 = a^3 + b^3 + c^3 = 1
<=> a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a) = a^3 + b^3 + c^3
=> 3(a + b)(b + c)(c + a) = 0
=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
+ Nếu a + b = 0 => a = -b
Thay a + b = 0 vào đề => c = 1
P = a^2017 + b^2017 + c^2017 = a^2017 + (-a)^2017 + 1^2017 = 1
Tương tự với 2 trường hợp còn lại ta cũng được P = 1
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
\(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
\(\left(a-b\right)^3-\left(a-b\right)^3\)
\(=\left(a-b\right)^2\left(a-b-a+b\right)\)
\(\left(a^2+2ab+b^2\right)+\left(a+b\right)^3\)
\(=\left(a+b\right)^2+\left(a+b\right)^3\)
\(=\left(a+b\right)^2\left(a+b+1\right)\)
......giải ....
a. \(\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
b ...ko cần làm .. =0
c.. =(a+b)^2 +(a+b)^3=(a+b)[ (a+b)+ (a+b)^2 ]
... check mk đó .. The end•••
Ta có:
\(ab+a+b=3\)
\(\Leftrightarrow a\left(b+1\right)+\left(b+1\right)=4\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)=4\)
Tương tự:\(\left(b+1\right)\left(c+1\right)=9\)
\(\left(c+1\right)\left(a+1\right)=16\)
Khi đó:\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=24\)
\(\Rightarrow4\left(c+1\right)=24\Rightarrow c+1=6\Rightarrow c=5\)
Tính toán tương tự ta được \(a=\frac{5}{3};b=\frac{1}{2}\)
Vậy \(a=\frac{5}{3};b=\frac{1}{2};c=5\)
a, Xét : 196 = 14^2 = (a^2+b^2+c^2) = a^4+b^4+c^4+2.(a^2b^2+b^2c^2+c^2a^2)
<=> a^4+b^4+c^4 = 196 - 2.(a^2b^2+b^2c^2+c^2a^2)
Xét : 0 = (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca)
Mà a^2+b^2+c^2 = 14
<=> 2.(ab+bc+ca) = -14
<=> ab+bc+ca = -7
<=> a^2b^2+b^2c^2+c^2a^2+2abc.(a+b+c) = 49
Lại có : a+b+c = 0
<=> a^2b^2+b^2c^2+c^2a^2 = 49
<=> A = a^4+b^4+c^4 = 196 - 2.49 = 98
Tk mk nha
b) \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow\)\(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)
\(\Leftrightarrow\)\(x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(D=0\)
a + b + c = a^3 + b^3 + c^3 = 1
<=> (a + b + c)^3 = a^3 + b^3 + c^3 = 1
<=> a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a) = a^3 + b^3 + c^3
=> 3(a + b)(b + c)(c + a) = 0
=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
+ Nếu a + b = 0 => a = -b
Thay a + b = 0 vào đề => c = 1
P = a^2017 + b^2017 + c^2017 = a^2017 + (-a)^2017 + 1^2017 = 1
Tương tự với 2 trường hợp còn lại ta cũng được P = 1
chuyen ve
a+b=1-ab
=>a=1-b/1+b
1-b/(1+b)+c=7-(1-b).c/1+b
1-b+c(1+b)=7(1+b) - (1-b)c
1-b+c+bc=7+7b-c+cb
4b-c=-3
c=4b+3
b+ab+3=3-b(4b+3)
5b+3=3-4b^2-3b
4b^2+8b=0
b=0 ; b=2(loai)
=> a=1,b=0,c=3
cau sau tu tinh , nho quy tac chuyen ve , nhan tu nha :))