K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a + b + c = a^3 + b^3 + c^3 = 1

<=> (a + b + c)^3 = a^3 + b^3 + c^3 = 1

<=> a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a) = a^3 + b^3 + c^3

=> 3(a + b)(b + c)(c + a) = 0

=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0

+ Nếu a + b = 0 => a = -b

Thay a + b = 0 vào đề => c = 1

P = a^2017 + b^2017 + c^2017 = a^2017 + (-a)^2017 + 1^2017 = 1

Tương tự với 2 trường hợp còn lại ta cũng được P = 1

3 tháng 3 2019

chuyen ve

a+b=1-ab

=>a=1-b/1+b

1-b/(1+b)+c=7-(1-b).c/1+b

1-b+c(1+b)=7(1+b) - (1-b)c

1-b+c+bc=7+7b-c+cb

4b-c=-3

c=4b+3

b+ab+3=3-b(4b+3)

5b+3=3-4b^2-3b

4b^2+8b=0

b=0 ; b=2(loai)

=> a=1,b=0,c=3

cau sau tu tinh , nho quy tac chuyen ve , nhan tu nha :))

3 tháng 3 2019

Vì a+b=1-ab nên a=0 và b=1 hoặc b=0 và a=1

TH1: 

Nếu a=0 và b=1 thì trong biểu thức b+c=3-bc \(c\in\varnothing\)

=> Trường hợp này không thỏa mãn đề bài

TH2:

Nếu a=1 và b=0 thì trong biểu thức b+c=3-bc c=3 vì 0+3=3-0*3=3

Vậy a=1;b=0;c=3

=>S=a^2019+b^2019+c^2019

    S=1^2019+0^2019+3^2019

    S=1+0+3^2019

    S=1+3^2019

Còn lại anh tự tính nhé, em chịu.

Với lại em mới lớp 6 thôi nên nếu em sai anh đừng ném đá em. Em cảm ơn anh!

3 tháng 3 2019

sai rồi em

a + b + c = a^3 + b^3 + c^3 = 1

<=> (a + b + c)^3 = a^3 + b^3 + c^3 = 1

<=> a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a) = a^3 + b^3 + c^3

=> 3(a + b)(b + c)(c + a) = 0

=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0

+ Nếu a + b = 0 => a = -b

Thay a + b = 0 vào đề => c = 1

P = a^2017 + b^2017 + c^2017 = a^2017 + (-a)^2017 + 1^2017 = 1

Tương tự với 2 trường hợp còn lại ta cũng được P = 1

14 tháng 9 2021

a) Ta có:

\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).

b) Ta có:

\(20^{n+1}-20^n=20^n\cdot19\)

Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)

\(x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

\(\left(a-b\right)^3-\left(a-b\right)^3\)

\(=\left(a-b\right)^2\left(a-b-a+b\right)\)

\(\left(a^2+2ab+b^2\right)+\left(a+b\right)^3\)

\(=\left(a+b\right)^2+\left(a+b\right)^3\)

\(=\left(a+b\right)^2\left(a+b+1\right)\)

15 tháng 7 2016

                                                          ......giải ....

  a. \(\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)                                            

 b ...ko cần làm .. =0

c.. =(a+b)^2 +(a+b)^3=(a+b)[ (a+b)+ (a+b)^2  ]

 ... check mk đó ..  The end•••

30 tháng 8 2019

Ta có:

\(ab+a+b=3\)

\(\Leftrightarrow a\left(b+1\right)+\left(b+1\right)=4\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)=4\)

Tương tự:\(\left(b+1\right)\left(c+1\right)=9\)

\(\left(c+1\right)\left(a+1\right)=16\)

Khi đó:\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=24\)

\(\Rightarrow4\left(c+1\right)=24\Rightarrow c+1=6\Rightarrow c=5\)

Tính toán tương tự ta được \(a=\frac{5}{3};b=\frac{1}{2}\)

Vậy \(a=\frac{5}{3};b=\frac{1}{2};c=5\)

6 tháng 9 2019

Tại sao (a+1)(b+1)(c+1)=24

10 tháng 2 2018

a, Xét : 196 = 14^2 = (a^2+b^2+c^2) = a^4+b^4+c^4+2.(a^2b^2+b^2c^2+c^2a^2) 

<=> a^4+b^4+c^4 = 196 - 2.(a^2b^2+b^2c^2+c^2a^2)

Xét : 0 = (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca)

Mà a^2+b^2+c^2 = 14

<=> 2.(ab+bc+ca) = -14

<=> ab+bc+ca = -7

<=> a^2b^2+b^2c^2+c^2a^2+2abc.(a+b+c) = 49

Lại có : a+b+c = 0

<=> a^2b^2+b^2c^2+c^2a^2 = 49

<=> A = a^4+b^4+c^4 = 196 - 2.49 = 98

Tk mk nha

10 tháng 2 2018

b)                \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\)\(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow\)\(x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)

\(\Leftrightarrow\)\(x=y=z=0\)

Vậy   \(D=0\)