Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất của dãy tỉ số bằng nhau :
\(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
Vì a + b + c + d khác 0 . Ta có :
\(a=\dfrac{1}{3}.3b=b\)(1)
\(b=\dfrac{1}{3}.3c=c\)(2)
\(c=\dfrac{1}{3}.3d=d\)(3)
\(d=\dfrac{1}{3}.3a=a\)(4)
Từ (1);(2);(3) và (4)
=> a = b = c = d
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-3c}{c}=\dfrac{b+c-3a}{a}=\dfrac{c+a-3b}{b}=\dfrac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}=\dfrac{-\left(a+b+c\right)}{a+b+c}=-1\)
\(\dfrac{a+b-3c}{c}=-1\Rightarrow a+b-3c=-c\Rightarrow a+b-2c=0\left(1\right)\)
\(\dfrac{b+c-3a}{a}=-1\Rightarrow b+c-3a=-a\Rightarrow b+c-2a=0\left(2\right)\)
\(\dfrac{c+a-3b}{b}=-1\Rightarrow a+c-3b=-b\Rightarrow a+c-2b=0\left(3\right)\)
Từ (1), (2) ta có:\(a+b-2c=b+c-2a\Rightarrow3a=3c\Rightarrow a=c\left(4\right)\)
Từ (1), (3) ta có:\(a+b-2c=a+c-2b\Rightarrow3b=3c\Rightarrow b=c\left(5\right)\)
Từ (4), (5)\(\Rightarrow a=b=c\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2b+c-a}{a}=\frac{2c+a-b}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c+a-b+2a+b-c}{a+b+c}\)
\(=\frac{2(a+b+c)}{a+b+c}=2\)
Do đó: \(\left\{\begin{matrix} 2b+c-a=2a\\ 2c+a-b=2b\\ 2a+b-c=2c\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2b=3a-c\\ 2c=3b-a\\ 2a=3c-b\end{matrix}\right.\) và \(\left\{\begin{matrix} c=3a-2b\\ a=3b-2c\\ b=3c-2a\end{matrix}\right.\)
Suy ra: \(P=\frac{(3a-2b)(3b-2c)(3c-2a)}{(3a-c)(3b-a)(3c-b)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)<=>\(\dfrac{2b+c}{a}-1=\dfrac{2c+a}{b}-1=\dfrac{2a+b}{c}-1\)
<=>\(\dfrac{2b+c}{a}=\dfrac{2c+a}{b}=\dfrac{2a+b}{c}=\dfrac{2b+c+2c+a+2a+b}{a+b+c}=\dfrac{3\left(a+b+c\right)}{a+b+c}=3\)=>\(\left\{{}\begin{matrix}2b+c=3a\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3a-c=2b\end{matrix}\right.\\2c+a=3b\Rightarrow\left\{{}\begin{matrix}3b-2c=a\\3b-a=2c\end{matrix}\right.\\2a+b=3c\Rightarrow\left\{{}\begin{matrix}3c-2a=b\\3c-b=2a\end{matrix}\right.\end{matrix}\right.\) thay vào
\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a2a+b-c}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2\)
\(\left\{\begin{matrix} 2b+c-a=2a\\ 2c-b+a=2b\\ 2a+b-c=2c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2b+c=3a\\ 2c+a=3b\\ 2a+b=3c\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} c=3a-2b\\ a=3b-2c\\ b=3c-2a\end{matrix}\right.\Rightarrow (3a-2b)(3b-2c)(3c-2a)=abc\) (1)
Và \(\left\{\begin{matrix} 2b=3a-c\\ 2c=3b-a\\ 2a=3c-b\end{matrix}\right.\Rightarrow (3a-c)(3b-a)(3c-b)=8abc\) (2)
Từ (1),(2) suy ra \(M=\frac{abc}{8abc}=\frac{1}{8}\)
b/
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
* \(\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b+c=3a\\2c+a=3b\\2a+b=3c\end{matrix}\right.\)
+)\(\Rightarrow\left\{{}\begin{matrix}c=3a-2b\\a=3b-2c\\b=3c-2a\end{matrix}\right.\)
\(\Rightarrow\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)=abc\left(1\right)\)
+) \(\Rightarrow\left\{{}\begin{matrix}2b=3c-a\\2c=3b-a\\2a=3c-b\end{matrix}\right.\)
\(\Rightarrow\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)=8abc\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{abc}{8abc}=\dfrac{1}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
Theo tc của DTSBN
\(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}=\frac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}\)
\(=\frac{-a-b-c}{a+b+c}=-1\)
\(\Rightarrow\hept{\begin{cases}a+b-3c=-c\\b+c-3a=-a\\c+a-3b=-b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Tham khảo thêm thôi chứ mình không chắc nhé! dạng này mình chưa từng gặp (hay có gặp nhưng rất ít). Thôi không dài dòng nữa. Vào bài thôi.
Giải
Theo t/c dãy tỉ số bằng nhau: \(\dfrac{a}{2b+3c}=\dfrac{b}{2c+3a}=\dfrac{c}{2a+3b}=\dfrac{a+b+c}{2b+3c+2c+3a+2a+3b}\)
\(=\dfrac{a+b+c}{\left(2b+3b\right)+\left(2c+3c\right)+\left(2a+3a\right)}=\dfrac{a+b+c}{5b+5c+5a}\) (*)
Từ (*) ta có: \(\dfrac{a}{2b+3c}=\dfrac{b}{2c+3a}=\dfrac{c}{2a+3b}=\dfrac{a+b+c}{5b+5c+5a}=\dfrac{1}{5}\)
Vì: \(5.\dfrac{a}{2b+3c}=5.\dfrac{b}{2c+3a}=5.\dfrac{c}{2a+3b}=\dfrac{5a+5b+5c}{5b+5c+5a}=1\)
Mà \(1:5=\dfrac{1}{5}\)
\(\Leftrightarrow5a\left(2b+3c\right)=5b\left(2c+3a\right)=5c\left(2a+3b\right)\)
\(\Leftrightarrow10ab+15ac=10bc+15ba=10ca+15cb\Leftrightarrow a=b=c^{\left(đpcm\right)}\)
3.
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\) và \(a+2b-3c=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)
+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)
+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)
Vậy ...
3.
ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5
vì\(\dfrac{a}{2}\)=5=>a=2.5=10
\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15
\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20
vậy a=10,b=15,c=20
chúc bạn hok tốt
Ta có; \(\frac{a+b-3c}{c}+4=\frac{b+c-3a}{a}+4=\frac{c+a-3b}{b}+4 \)
<=>\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b} \)
Mà a,b,c>0=>a+b+c>0
=>\(\frac{1}{a}=\frac{1}{c}=\frac{1}{b} \)
=>a=b=c(đpcm)